基于低采样率智能头盔的摩托车手头部运动识别

Yu-Ren Chen, Chang-Ming Tsai, K. Wong, Tzu-Chang Lee, Chee-Hoe Loh, Jia-Ching Ying, Yi-Chung Chen
{"title":"基于低采样率智能头盔的摩托车手头部运动识别","authors":"Yu-Ren Chen, Chang-Ming Tsai, K. Wong, Tzu-Chang Lee, Chee-Hoe Loh, Jia-Ching Ying, Yi-Chung Chen","doi":"10.1109/Ubi-Media.2019.00038","DOIUrl":null,"url":null,"abstract":"The number of traffic incidents involving motorcyclists is on the rise; consequently research has focused on analysis of the head motions of motorcyclists to determine their level of concentration on the road while driving. These studies used three-axis accelerometers in helmets to record the acceleration signals that are detected when motorcyclists move their heads and then analyzed these signals using machine learning. However, we found that these methods are not very effective for the following reasons: (1) battery and memory capacity constraints mean that helmet sensors cannot collect acceleration data frequently, so the results cannot completely present head motions. (2) When motorcyclists are riding, the acceleration data collected by the helmets not only include the acceleration data of motorcyclist head motions but also include the acceleration data of motorcycle movement, which creates difficulties for recognition. (3) Due to the volume constraints of helmets, we cannot install GPUs or large-capacity batteries, so more complex models or deep learning models cannot be directly used for head motion recognition. (4) Head motions are smaller than body or limb motions, and most head motions do not occur periodically, which makes recognition even more difficult. To overcome these issues, this study proposed a novel machine learning method combined with a fuzzy neural network to perform motorcyclist head motion recognition with low-frequency acceleration signals collected from helmets. Experiment simulations demonstrate the validity of the proposed method.","PeriodicalId":259542,"journal":{"name":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Motorcyclists' Head Motions Recognition by Using the Smart Helmet with Low Sampling Rate\",\"authors\":\"Yu-Ren Chen, Chang-Ming Tsai, K. Wong, Tzu-Chang Lee, Chee-Hoe Loh, Jia-Ching Ying, Yi-Chung Chen\",\"doi\":\"10.1109/Ubi-Media.2019.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The number of traffic incidents involving motorcyclists is on the rise; consequently research has focused on analysis of the head motions of motorcyclists to determine their level of concentration on the road while driving. These studies used three-axis accelerometers in helmets to record the acceleration signals that are detected when motorcyclists move their heads and then analyzed these signals using machine learning. However, we found that these methods are not very effective for the following reasons: (1) battery and memory capacity constraints mean that helmet sensors cannot collect acceleration data frequently, so the results cannot completely present head motions. (2) When motorcyclists are riding, the acceleration data collected by the helmets not only include the acceleration data of motorcyclist head motions but also include the acceleration data of motorcycle movement, which creates difficulties for recognition. (3) Due to the volume constraints of helmets, we cannot install GPUs or large-capacity batteries, so more complex models or deep learning models cannot be directly used for head motion recognition. (4) Head motions are smaller than body or limb motions, and most head motions do not occur periodically, which makes recognition even more difficult. To overcome these issues, this study proposed a novel machine learning method combined with a fuzzy neural network to perform motorcyclist head motion recognition with low-frequency acceleration signals collected from helmets. Experiment simulations demonstrate the validity of the proposed method.\",\"PeriodicalId\":259542,\"journal\":{\"name\":\"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Ubi-Media.2019.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Ubi-Media.2019.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

涉及电单车驾驶者的交通事故数目不断上升;因此,研究的重点是分析摩托车手的头部运动,以确定他们在驾驶时对道路的集中程度。这些研究使用头盔上的三轴加速度计记录摩托车手移动头部时检测到的加速信号,然后使用机器学习分析这些信号。然而,我们发现这些方法并不是很有效,原因如下:(1)电池和内存容量的限制意味着头盔传感器不能频繁地收集加速度数据,因此结果不能完整地呈现头部运动。(2)摩托车骑行时,头盔采集的加速度数据不仅包括摩托车头部运动的加速度数据,还包括摩托车运动的加速度数据,这给识别带来了困难。(3)由于头盔的体积限制,我们无法安装gpu或大容量电池,因此无法直接使用更复杂的模型或深度学习模型进行头部运动识别。(4)头部运动比身体或肢体运动要小,而且大多数头部运动不是周期性发生的,这使得识别更加困难。为了克服这些问题,本研究提出了一种结合模糊神经网络的新型机器学习方法,利用从头盔收集的低频加速度信号进行摩托车手头部运动识别。实验仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Motorcyclists' Head Motions Recognition by Using the Smart Helmet with Low Sampling Rate
The number of traffic incidents involving motorcyclists is on the rise; consequently research has focused on analysis of the head motions of motorcyclists to determine their level of concentration on the road while driving. These studies used three-axis accelerometers in helmets to record the acceleration signals that are detected when motorcyclists move their heads and then analyzed these signals using machine learning. However, we found that these methods are not very effective for the following reasons: (1) battery and memory capacity constraints mean that helmet sensors cannot collect acceleration data frequently, so the results cannot completely present head motions. (2) When motorcyclists are riding, the acceleration data collected by the helmets not only include the acceleration data of motorcyclist head motions but also include the acceleration data of motorcycle movement, which creates difficulties for recognition. (3) Due to the volume constraints of helmets, we cannot install GPUs or large-capacity batteries, so more complex models or deep learning models cannot be directly used for head motion recognition. (4) Head motions are smaller than body or limb motions, and most head motions do not occur periodically, which makes recognition even more difficult. To overcome these issues, this study proposed a novel machine learning method combined with a fuzzy neural network to perform motorcyclist head motion recognition with low-frequency acceleration signals collected from helmets. Experiment simulations demonstrate the validity of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Target-Monitoring Learning Companion Design DeepBonds: A Deep Learning Approach to Predicting United States Treasury Yield Clinically Applicable Deep Learning for Diagnosis of Diabetic Retinopathy Markerless Indoor/Outdoor Augmented Reality Navigation Device Based on ORB-Visual-Odometry Positioning Estimation and Wall-Floor-Boundary Image Registration [Copyright notice]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1