{"title":"利用深度学习技术从棕榈叶中识别马来拉姆语字符","authors":"Remya Sivan, Tripty Singh, P. Pati","doi":"10.1109/OCIT56763.2022.00035","DOIUrl":null,"url":null,"abstract":"Ancient manuscripts like palm leaves, available in museum libraries, are a rich source of knowledge. Digitization helps store this knowledge protected for the future & enables its global access. Varying writing styles, presence of currently discarded & rare characters, quality of imaging, and palm leaves are some of the challenges to be handled while building an offline handwritten recognition system for these manuscripts. This paper focuses on recognizing Malayalam characters available in palm leaves using deep learning techniques. With the help of the histogram and contour method, lines are segmented from palm leaves first. Subsequently, individual characters are extracted from the lines. A customized Convolution Neural Network (CNN) is employed to recognize these segmented characters. This trained CNN recognizes forty-eight classes of segmented characters with 86% accuracy. Additionally, this paper compares the results with other standard CNN models.","PeriodicalId":425541,"journal":{"name":"2022 OITS International Conference on Information Technology (OCIT)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Malayalam Character Recognition from Palm Leaves Using Deep-Learning\",\"authors\":\"Remya Sivan, Tripty Singh, P. Pati\",\"doi\":\"10.1109/OCIT56763.2022.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ancient manuscripts like palm leaves, available in museum libraries, are a rich source of knowledge. Digitization helps store this knowledge protected for the future & enables its global access. Varying writing styles, presence of currently discarded & rare characters, quality of imaging, and palm leaves are some of the challenges to be handled while building an offline handwritten recognition system for these manuscripts. This paper focuses on recognizing Malayalam characters available in palm leaves using deep learning techniques. With the help of the histogram and contour method, lines are segmented from palm leaves first. Subsequently, individual characters are extracted from the lines. A customized Convolution Neural Network (CNN) is employed to recognize these segmented characters. This trained CNN recognizes forty-eight classes of segmented characters with 86% accuracy. Additionally, this paper compares the results with other standard CNN models.\",\"PeriodicalId\":425541,\"journal\":{\"name\":\"2022 OITS International Conference on Information Technology (OCIT)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 OITS International Conference on Information Technology (OCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCIT56763.2022.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 OITS International Conference on Information Technology (OCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCIT56763.2022.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Malayalam Character Recognition from Palm Leaves Using Deep-Learning
Ancient manuscripts like palm leaves, available in museum libraries, are a rich source of knowledge. Digitization helps store this knowledge protected for the future & enables its global access. Varying writing styles, presence of currently discarded & rare characters, quality of imaging, and palm leaves are some of the challenges to be handled while building an offline handwritten recognition system for these manuscripts. This paper focuses on recognizing Malayalam characters available in palm leaves using deep learning techniques. With the help of the histogram and contour method, lines are segmented from palm leaves first. Subsequently, individual characters are extracted from the lines. A customized Convolution Neural Network (CNN) is employed to recognize these segmented characters. This trained CNN recognizes forty-eight classes of segmented characters with 86% accuracy. Additionally, this paper compares the results with other standard CNN models.