David Sbrissa, S. Pratavieira, A. G. Salvio, C. Kurachi, V. Bagnato, L. F. Costa, G. Travieso
{"title":"不对称和不规则边界作为黑素细胞病变的鉴别因素","authors":"David Sbrissa, S. Pratavieira, A. G. Salvio, C. Kurachi, V. Bagnato, L. F. Costa, G. Travieso","doi":"10.1117/12.2186180","DOIUrl":null,"url":null,"abstract":"Image processing tools have been widely used in systems supporting medical diagnosis. The use of mobile devices for the diagnosis of melanoma can assist doctors and improve their diagnosis of a melanocytic lesion. This study proposes a method of image analysis for melanoma discrimination from other types of melanocytic lesions, such as regular and atypical nevi. The process is based on extracting features related with asymmetry and border irregularity. It were collected 104 images, from medical database of two years. The images were obtained with standard digital cameras without lighting and scale control. Metrics relating to the characteristics of shape, asymmetry and curvature of the contour were extracted from segmented images. Linear Discriminant Analysis was performed for dimensionality reduction and data visualization. Segmentation results showed good efficiency in the process, with approximately 88:5% accuracy. Validation results presents sensibility and specificity 85% and 70% for melanoma detection, respectively.","PeriodicalId":307847,"journal":{"name":"Biophotonics South America","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymmetry and irregularity border as discrimination factor between melanocytic lesions\",\"authors\":\"David Sbrissa, S. Pratavieira, A. G. Salvio, C. Kurachi, V. Bagnato, L. F. Costa, G. Travieso\",\"doi\":\"10.1117/12.2186180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image processing tools have been widely used in systems supporting medical diagnosis. The use of mobile devices for the diagnosis of melanoma can assist doctors and improve their diagnosis of a melanocytic lesion. This study proposes a method of image analysis for melanoma discrimination from other types of melanocytic lesions, such as regular and atypical nevi. The process is based on extracting features related with asymmetry and border irregularity. It were collected 104 images, from medical database of two years. The images were obtained with standard digital cameras without lighting and scale control. Metrics relating to the characteristics of shape, asymmetry and curvature of the contour were extracted from segmented images. Linear Discriminant Analysis was performed for dimensionality reduction and data visualization. Segmentation results showed good efficiency in the process, with approximately 88:5% accuracy. Validation results presents sensibility and specificity 85% and 70% for melanoma detection, respectively.\",\"PeriodicalId\":307847,\"journal\":{\"name\":\"Biophotonics South America\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophotonics South America\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2186180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophotonics South America","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2186180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Asymmetry and irregularity border as discrimination factor between melanocytic lesions
Image processing tools have been widely used in systems supporting medical diagnosis. The use of mobile devices for the diagnosis of melanoma can assist doctors and improve their diagnosis of a melanocytic lesion. This study proposes a method of image analysis for melanoma discrimination from other types of melanocytic lesions, such as regular and atypical nevi. The process is based on extracting features related with asymmetry and border irregularity. It were collected 104 images, from medical database of two years. The images were obtained with standard digital cameras without lighting and scale control. Metrics relating to the characteristics of shape, asymmetry and curvature of the contour were extracted from segmented images. Linear Discriminant Analysis was performed for dimensionality reduction and data visualization. Segmentation results showed good efficiency in the process, with approximately 88:5% accuracy. Validation results presents sensibility and specificity 85% and 70% for melanoma detection, respectively.