nanogravity 15年数据集:寻找来自新物理学的信号

A. Afzal, G. Agazie, A. Anumarlapudi, A. Archibald, Z. Arzoumanian, P. Baker, B. B'ecsy, J. Blanco-Pillado, L. Blecha, K. Boddy, A. Brazier, P. Brook, S. Burke-Spolaor, R. Burnette, R. Case, M. Charisi, S. Chatterjee, K. Chatziioannou, B. Cheeseboro, Siyuan Chen, T. Cohen, J. Cordes, N. Cornish, F. Crawford, H. Cromartie, K. Crowter, C. Cutler, M. DeCesar, D. DeGan, P. Demorest, Heling Deng, T. Dolch, B. Drachler, Richard von Eckardstein, E. Ferrara, W. Fiore, E. Fonseca, G. Freedman, N. Garver-Daniels, P. Gentile, K. A. Gersbach, J. Glaser, D. Good, Lydia Guertin, K. Gultekin, J. Hazboun, S. Hourihane, K. Islo, R. Jennings, A. Johnson, Megan L. Jones, A. Kaiser, D. Kaplan, L. Kelley, M. Kerr, J. Key, N. Laal, M. Lam, W. Lamb, T. Lazio, Vincent S. H. Lee, N. Lewandowska, Rafael R. Lino dos Santos, T. Littenberg, Tianyu Liu, D. Lorimer, Jing Luo, R. Lynch, Chung-Pei Ma, D. Madison, A. McEwen, J. McKee, M. Mclaughlin, N. McMann, B. W. Meyers, P. Meyers, C. Mingarelli, A. Mitridate, J. Nay, P. Natarajan, C.
{"title":"nanogravity 15年数据集:寻找来自新物理学的信号","authors":"A. Afzal, G. Agazie, A. Anumarlapudi, A. Archibald, Z. Arzoumanian, P. Baker, B. B'ecsy, J. Blanco-Pillado, L. Blecha, K. Boddy, A. Brazier, P. Brook, S. Burke-Spolaor, R. Burnette, R. Case, M. Charisi, S. Chatterjee, K. Chatziioannou, B. Cheeseboro, Siyuan Chen, T. Cohen, J. Cordes, N. Cornish, F. Crawford, H. Cromartie, K. Crowter, C. Cutler, M. DeCesar, D. DeGan, P. Demorest, Heling Deng, T. Dolch, B. Drachler, Richard von Eckardstein, E. Ferrara, W. Fiore, E. Fonseca, G. Freedman, N. Garver-Daniels, P. Gentile, K. A. Gersbach, J. Glaser, D. Good, Lydia Guertin, K. Gultekin, J. Hazboun, S. Hourihane, K. Islo, R. Jennings, A. Johnson, Megan L. Jones, A. Kaiser, D. Kaplan, L. Kelley, M. Kerr, J. Key, N. Laal, M. Lam, W. Lamb, T. Lazio, Vincent S. H. Lee, N. Lewandowska, Rafael R. Lino dos Santos, T. Littenberg, Tianyu Liu, D. Lorimer, Jing Luo, R. Lynch, Chung-Pei Ma, D. Madison, A. McEwen, J. McKee, M. Mclaughlin, N. McMann, B. W. Meyers, P. Meyers, C. Mingarelli, A. Mitridate, J. Nay, P. Natarajan, C. ","doi":"10.3847/2041-8213/acdc91","DOIUrl":null,"url":null,"abstract":"The 15 yr pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) shows positive evidence for the presence of a low-frequency gravitational-wave (GW) background. In this paper, we investigate potential cosmological interpretations of this signal, specifically cosmic inflation, scalar-induced GWs, first-order phase transitions, cosmic strings, and domain walls. We find that, with the exception of stable cosmic strings of field theory origin, all these models can reproduce the observed signal. When compared to the standard interpretation in terms of inspiraling supermassive black hole binaries (SMBHBs), many cosmological models seem to provide a better fit resulting in Bayes factors in the range from 10 to 100. However, these results strongly depend on modeling assumptions about the cosmic SMBHB population and, at this stage, should not be regarded as evidence for new physics. Furthermore, we identify excluded parameter regions where the predicted GW signal from cosmological sources significantly exceeds the NANOGrav signal. These parameter constraints are independent of the origin of the NANOGrav signal and illustrate how pulsar timing data provide a new way to constrain the parameter space of these models. Finally, we search for deterministic signals produced by models of ultralight dark matter (ULDM) and dark matter substructures in the Milky Way. We find no evidence for either of these signals and thus report updated constraints on these models. In the case of ULDM, these constraints outperform torsion balance and atomic clock constraints for ULDM coupled to electrons, muons, or gluons.","PeriodicalId":179976,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"140","resultStr":"{\"title\":\"The NANOGrav 15 yr Data Set: Search for Signals from New Physics\",\"authors\":\"A. Afzal, G. Agazie, A. Anumarlapudi, A. Archibald, Z. Arzoumanian, P. Baker, B. B'ecsy, J. Blanco-Pillado, L. Blecha, K. Boddy, A. Brazier, P. Brook, S. Burke-Spolaor, R. Burnette, R. Case, M. Charisi, S. Chatterjee, K. Chatziioannou, B. Cheeseboro, Siyuan Chen, T. Cohen, J. Cordes, N. Cornish, F. Crawford, H. Cromartie, K. Crowter, C. Cutler, M. DeCesar, D. DeGan, P. Demorest, Heling Deng, T. Dolch, B. Drachler, Richard von Eckardstein, E. Ferrara, W. Fiore, E. Fonseca, G. Freedman, N. Garver-Daniels, P. Gentile, K. A. Gersbach, J. Glaser, D. Good, Lydia Guertin, K. Gultekin, J. Hazboun, S. Hourihane, K. Islo, R. Jennings, A. Johnson, Megan L. Jones, A. Kaiser, D. Kaplan, L. Kelley, M. Kerr, J. Key, N. Laal, M. Lam, W. Lamb, T. Lazio, Vincent S. H. Lee, N. Lewandowska, Rafael R. Lino dos Santos, T. Littenberg, Tianyu Liu, D. Lorimer, Jing Luo, R. Lynch, Chung-Pei Ma, D. Madison, A. McEwen, J. McKee, M. Mclaughlin, N. McMann, B. W. Meyers, P. Meyers, C. Mingarelli, A. Mitridate, J. Nay, P. Natarajan, C. \",\"doi\":\"10.3847/2041-8213/acdc91\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 15 yr pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) shows positive evidence for the presence of a low-frequency gravitational-wave (GW) background. In this paper, we investigate potential cosmological interpretations of this signal, specifically cosmic inflation, scalar-induced GWs, first-order phase transitions, cosmic strings, and domain walls. We find that, with the exception of stable cosmic strings of field theory origin, all these models can reproduce the observed signal. When compared to the standard interpretation in terms of inspiraling supermassive black hole binaries (SMBHBs), many cosmological models seem to provide a better fit resulting in Bayes factors in the range from 10 to 100. However, these results strongly depend on modeling assumptions about the cosmic SMBHB population and, at this stage, should not be regarded as evidence for new physics. Furthermore, we identify excluded parameter regions where the predicted GW signal from cosmological sources significantly exceeds the NANOGrav signal. These parameter constraints are independent of the origin of the NANOGrav signal and illustrate how pulsar timing data provide a new way to constrain the parameter space of these models. Finally, we search for deterministic signals produced by models of ultralight dark matter (ULDM) and dark matter substructures in the Milky Way. We find no evidence for either of these signals and thus report updated constraints on these models. In the case of ULDM, these constraints outperform torsion balance and atomic clock constraints for ULDM coupled to electrons, muons, or gluons.\",\"PeriodicalId\":179976,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"140\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/acdc91\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/acdc91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 140

摘要

北美纳赫兹引力波天文台(nanogravity)收集的15年脉冲星计时数据显示了低频引力波(GW)背景存在的确凿证据。在本文中,我们研究了该信号的潜在宇宙学解释,特别是宇宙暴胀,标量诱导的GWs,一阶相变,宇宙弦和畴壁。我们发现,除了场论起源的稳定宇宙弦外,所有这些模型都能再现观测到的信号。与超大质量黑洞双星(SMBHBs)的标准解释相比,许多宇宙学模型似乎提供了更好的拟合,导致贝叶斯因子在10到100之间。然而,这些结果在很大程度上依赖于对宇宙SMBHB种群的建模假设,在这个阶段,不应该被视为新物理学的证据。此外,我们确定了排除的参数区域,其中来自宇宙源的预测GW信号明显超过nanogravity信号。这些参数约束与nanogravity信号的来源无关,说明脉冲星授时数据为约束这些模型的参数空间提供了一种新的方法。最后,我们在银河系中寻找超轻暗物质(ULDM)和暗物质子结构模型产生的确定性信号。我们没有发现这些信号的证据,因此报告了这些模型的更新约束。在ULDM的情况下,这些约束优于与电子、μ子或胶子耦合的ULDM的扭转平衡和原子钟约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The NANOGrav 15 yr Data Set: Search for Signals from New Physics
The 15 yr pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) shows positive evidence for the presence of a low-frequency gravitational-wave (GW) background. In this paper, we investigate potential cosmological interpretations of this signal, specifically cosmic inflation, scalar-induced GWs, first-order phase transitions, cosmic strings, and domain walls. We find that, with the exception of stable cosmic strings of field theory origin, all these models can reproduce the observed signal. When compared to the standard interpretation in terms of inspiraling supermassive black hole binaries (SMBHBs), many cosmological models seem to provide a better fit resulting in Bayes factors in the range from 10 to 100. However, these results strongly depend on modeling assumptions about the cosmic SMBHB population and, at this stage, should not be regarded as evidence for new physics. Furthermore, we identify excluded parameter regions where the predicted GW signal from cosmological sources significantly exceeds the NANOGrav signal. These parameter constraints are independent of the origin of the NANOGrav signal and illustrate how pulsar timing data provide a new way to constrain the parameter space of these models. Finally, we search for deterministic signals produced by models of ultralight dark matter (ULDM) and dark matter substructures in the Milky Way. We find no evidence for either of these signals and thus report updated constraints on these models. In the case of ULDM, these constraints outperform torsion balance and atomic clock constraints for ULDM coupled to electrons, muons, or gluons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erratum: “Large Volcanic Event on Io Inferred from Jovian Sodium Nebula Brightening” (2019, ApJL, 871, L23) Voyager 1 Electron Densities in the Very Local Interstellar Medium to beyond 160 au Formation of Fan-spine Magnetic Topology through Flux Emergence and Subsequent Jet Production The First Robust Evidence Showing a Dark Matter Density Spike Around the Supermassive Black Hole in OJ 287 Evidence for a Redshifted Excess in the Intracluster Light Fractions of Merging Clusters at z ∼ 0.8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1