面向移动搜索的篇章级阅读行为模型

Zhijing Wu, Jiaxin Mao, Kedi Xu, Dandan Song, Heyan Huang
{"title":"面向移动搜索的篇章级阅读行为模型","authors":"Zhijing Wu, Jiaxin Mao, Kedi Xu, Dandan Song, Heyan Huang","doi":"10.1145/3543507.3583343","DOIUrl":null,"url":null,"abstract":"Reading is a vital and complex cognitive activity during users’ information-seeking process. Several studies have focused on understanding users’ reading behavior in desktop search. Their findings greatly contribute to the design of information retrieval models. However, little is known about how users read a result in mobile search, although search currently happens more frequently in mobile scenarios. In this paper, we conduct a lab-based user study to investigate users’ fine-grained reading behavior patterns in mobile search. We find that users’ reading attention allocation is strongly affected by several behavior biases, such as position and selection biases. Inspired by these findings, we propose a probabilistic generative model, the Passage-level Reading behavior Model (PRM), to model users’ reading behavior in mobile search. The PRM utilizes observable passage-level exposure and viewport duration events to infer users’ unobserved skimming event, reading event, and satisfaction perception during the reading process. Besides fitting the passage-level reading behavior, we utilize the fitted parameters of PRM to estimate the passage-level and document-level relevance. Experimental results show that PRM outperforms existing unsupervised relevance estimation models. PRM has strong interpretability and provides valuable insights into the understanding of how users seek and perceive useful information in mobile search.","PeriodicalId":296351,"journal":{"name":"Proceedings of the ACM Web Conference 2023","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Passage-Level Reading Behavior Model for Mobile Search\",\"authors\":\"Zhijing Wu, Jiaxin Mao, Kedi Xu, Dandan Song, Heyan Huang\",\"doi\":\"10.1145/3543507.3583343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reading is a vital and complex cognitive activity during users’ information-seeking process. Several studies have focused on understanding users’ reading behavior in desktop search. Their findings greatly contribute to the design of information retrieval models. However, little is known about how users read a result in mobile search, although search currently happens more frequently in mobile scenarios. In this paper, we conduct a lab-based user study to investigate users’ fine-grained reading behavior patterns in mobile search. We find that users’ reading attention allocation is strongly affected by several behavior biases, such as position and selection biases. Inspired by these findings, we propose a probabilistic generative model, the Passage-level Reading behavior Model (PRM), to model users’ reading behavior in mobile search. The PRM utilizes observable passage-level exposure and viewport duration events to infer users’ unobserved skimming event, reading event, and satisfaction perception during the reading process. Besides fitting the passage-level reading behavior, we utilize the fitted parameters of PRM to estimate the passage-level and document-level relevance. Experimental results show that PRM outperforms existing unsupervised relevance estimation models. PRM has strong interpretability and provides valuable insights into the understanding of how users seek and perceive useful information in mobile search.\",\"PeriodicalId\":296351,\"journal\":{\"name\":\"Proceedings of the ACM Web Conference 2023\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Web Conference 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3543507.3583343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Web Conference 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543507.3583343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

阅读是用户信息寻求过程中重要而复杂的认知活动。有几项研究的重点是了解用户在桌面搜索中的阅读行为。他们的发现对信息检索模型的设计有很大的帮助。然而,人们对用户如何在移动搜索中阅读结果知之甚少,尽管搜索目前在移动场景中更频繁地发生。在本文中,我们进行了一项基于实验室的用户研究,以调查用户在移动搜索中的细粒度阅读行为模式。研究发现,用户的阅读注意力分配受到一些行为偏差的强烈影响,如位置偏差和选择偏差。受这些发现的启发,我们提出了一个概率生成模型,即通道级阅读行为模型(PRM),以模拟用户在移动搜索中的阅读行为。PRM利用可观察到的通道级曝光和视口持续时间事件来推断用户在阅读过程中未被观察到的浏览事件、阅读事件和满意度感知。除了拟合文章层面的阅读行为外,我们还利用拟合的PRM参数来估计文章层面和文档层面的相关性。实验结果表明,PRM算法优于现有的无监督相关估计模型。PRM具有很强的可解释性,并为理解用户如何在移动搜索中寻找和感知有用信息提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Passage-Level Reading Behavior Model for Mobile Search
Reading is a vital and complex cognitive activity during users’ information-seeking process. Several studies have focused on understanding users’ reading behavior in desktop search. Their findings greatly contribute to the design of information retrieval models. However, little is known about how users read a result in mobile search, although search currently happens more frequently in mobile scenarios. In this paper, we conduct a lab-based user study to investigate users’ fine-grained reading behavior patterns in mobile search. We find that users’ reading attention allocation is strongly affected by several behavior biases, such as position and selection biases. Inspired by these findings, we propose a probabilistic generative model, the Passage-level Reading behavior Model (PRM), to model users’ reading behavior in mobile search. The PRM utilizes observable passage-level exposure and viewport duration events to infer users’ unobserved skimming event, reading event, and satisfaction perception during the reading process. Besides fitting the passage-level reading behavior, we utilize the fitted parameters of PRM to estimate the passage-level and document-level relevance. Experimental results show that PRM outperforms existing unsupervised relevance estimation models. PRM has strong interpretability and provides valuable insights into the understanding of how users seek and perceive useful information in mobile search.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CurvDrop: A Ricci Curvature Based Approach to Prevent Graph Neural Networks from Over-Smoothing and Over-Squashing Learning to Simulate Crowd Trajectories with Graph Networks Word Sense Disambiguation by Refining Target Word Embedding Curriculum Graph Poisoning Optimizing Guided Traversal for Fast Learned Sparse Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1