认知无线电协同频谱感知:分集组合方法

Oscar Filio-Rodriguez, V. Kontorovich, S. Primak, F. Ramos-Alarcón
{"title":"认知无线电协同频谱感知:分集组合方法","authors":"Oscar Filio-Rodriguez, V. Kontorovich, S. Primak, F. Ramos-Alarcón","doi":"10.4236/wsn.2011.31004","DOIUrl":null,"url":null,"abstract":"In this paper it is shown that cyclostationary spectrum sensing for Cognitive Radio networks, applying multiple cyclic frequencies for single user detection can be interpreted (with some assumptions) in terms of optimal incoherent diversity addition for “virtual diversity branches” or SIMO radar. This approach allows proposing, by analogy to diversity combining, suboptimal algorithms which can provide near optimal characteristics for the Neyman-Pearson Test (NPT) for single user detection. The analysis is based on the Generalized Gaussian (Klovsky-Middleton) Channel Model, which allows obtaining the NPT noise immunity characteristics: probability of misdetection error (PM) and probability of false alarm (Pfa) or Receiver Operational Characteristics (ROC) in the most general way. Some quasi-optimum algorithms such as energetic receiver and selection addition algorithm are analyzed and their comparison with the noise immunity properties (ROC) of the optimum approach is provided as well. Finally, the diversity combining approach is applied for the collaborative spectrum sensing and censoring. It is shown how the diversity addition principles are applied for distributed detection algorithms, called hereafter as SIMO radar or distributed SIMO radar, implementing Majority Addition (MA) approach and Weighted Majority Addition (WMA) principle.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Collaborative Spectrum Sensing for Cognitive Radio: Diversity Combining Approach\",\"authors\":\"Oscar Filio-Rodriguez, V. Kontorovich, S. Primak, F. Ramos-Alarcón\",\"doi\":\"10.4236/wsn.2011.31004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper it is shown that cyclostationary spectrum sensing for Cognitive Radio networks, applying multiple cyclic frequencies for single user detection can be interpreted (with some assumptions) in terms of optimal incoherent diversity addition for “virtual diversity branches” or SIMO radar. This approach allows proposing, by analogy to diversity combining, suboptimal algorithms which can provide near optimal characteristics for the Neyman-Pearson Test (NPT) for single user detection. The analysis is based on the Generalized Gaussian (Klovsky-Middleton) Channel Model, which allows obtaining the NPT noise immunity characteristics: probability of misdetection error (PM) and probability of false alarm (Pfa) or Receiver Operational Characteristics (ROC) in the most general way. Some quasi-optimum algorithms such as energetic receiver and selection addition algorithm are analyzed and their comparison with the noise immunity properties (ROC) of the optimum approach is provided as well. Finally, the diversity combining approach is applied for the collaborative spectrum sensing and censoring. It is shown how the diversity addition principles are applied for distributed detection algorithms, called hereafter as SIMO radar or distributed SIMO radar, implementing Majority Addition (MA) approach and Weighted Majority Addition (WMA) principle.\",\"PeriodicalId\":251051,\"journal\":{\"name\":\"Wirel. Sens. Netw.\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wirel. Sens. Netw.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/wsn.2011.31004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wirel. Sens. Netw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/wsn.2011.31004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文表明,认知无线电网络的循环平稳频谱感知,应用多个循环频率进行单用户检测,可以用“虚拟分集分支”或SIMO雷达的最佳非相干分集加法来解释(在某些假设下)。这种方法可以提出类似于多样性组合的次优算法,这些算法可以为单用户检测的Neyman-Pearson测试(NPT)提供接近最优的特性。该分析基于广义高斯(Klovsky-Middleton)信道模型,该模型允许以最一般的方式获得NPT噪声抗扰特性:误检误差概率(PM)和虚警概率(Pfa)或接收机操作特性(ROC)。分析了几种准最优算法,如能量接收算法和选择加法算法,并与最优算法的抗噪性能(ROC)进行了比较。最后,将分集组合方法应用于协同频谱感知与滤波。展示了分集加法原理如何应用于分布式检测算法,以下称为SIMO雷达或分布式SIMO雷达,实现多数加法(MA)方法和加权多数加法(WMA)原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Collaborative Spectrum Sensing for Cognitive Radio: Diversity Combining Approach
In this paper it is shown that cyclostationary spectrum sensing for Cognitive Radio networks, applying multiple cyclic frequencies for single user detection can be interpreted (with some assumptions) in terms of optimal incoherent diversity addition for “virtual diversity branches” or SIMO radar. This approach allows proposing, by analogy to diversity combining, suboptimal algorithms which can provide near optimal characteristics for the Neyman-Pearson Test (NPT) for single user detection. The analysis is based on the Generalized Gaussian (Klovsky-Middleton) Channel Model, which allows obtaining the NPT noise immunity characteristics: probability of misdetection error (PM) and probability of false alarm (Pfa) or Receiver Operational Characteristics (ROC) in the most general way. Some quasi-optimum algorithms such as energetic receiver and selection addition algorithm are analyzed and their comparison with the noise immunity properties (ROC) of the optimum approach is provided as well. Finally, the diversity combining approach is applied for the collaborative spectrum sensing and censoring. It is shown how the diversity addition principles are applied for distributed detection algorithms, called hereafter as SIMO radar or distributed SIMO radar, implementing Majority Addition (MA) approach and Weighted Majority Addition (WMA) principle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D DOPs for Positioning Applications Using Range Measurements An Energy-Based Stochastic Model for Wireless Sensor Networks ANCAEE: A Novel Clustering Algorithm for Energy Efficiency in Wireless Sensor Networks Wireless Power Generation Strategy Using EAP Actuated Energy Harvester for Marine Information Acquisition Wireless Sensor Network for Monitoring Maturity Stage of Fruit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1