{"title":"量子公平机器学习","authors":"Elija Perrier","doi":"10.1145/3461702.3462611","DOIUrl":null,"url":null,"abstract":"In this paper, we inaugurate the field of quantum fair machine learning. We undertake a comparative analysis of differences and similarities between classical and quantum fair machine learning algorithms, specifying how the unique features of quantum computation alter measures, metrics and remediation strategies when quantum algorithms are subject to fairness constraints. We present the first results in quantum fair machine learning by demonstrating the use of Grover's search algorithm to satisfy statistical parity constraints imposed on quantum algorithms. We provide lower-bounds on iterations needed to achieve such statistical parity within ε-tolerance. We extend canonical Lipschitz-conditioned individual fairness criteria to the quantum setting using quantum metrics. We examine the consequences for typical measures of fairness in machine learning context when quantum information processing and quantum data are involved. Finally, we propose open questions and research programmes for this new field of interest to researchers in computer science, ethics and quantum computation.","PeriodicalId":197336,"journal":{"name":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Quantum Fair Machine Learning\",\"authors\":\"Elija Perrier\",\"doi\":\"10.1145/3461702.3462611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we inaugurate the field of quantum fair machine learning. We undertake a comparative analysis of differences and similarities between classical and quantum fair machine learning algorithms, specifying how the unique features of quantum computation alter measures, metrics and remediation strategies when quantum algorithms are subject to fairness constraints. We present the first results in quantum fair machine learning by demonstrating the use of Grover's search algorithm to satisfy statistical parity constraints imposed on quantum algorithms. We provide lower-bounds on iterations needed to achieve such statistical parity within ε-tolerance. We extend canonical Lipschitz-conditioned individual fairness criteria to the quantum setting using quantum metrics. We examine the consequences for typical measures of fairness in machine learning context when quantum information processing and quantum data are involved. Finally, we propose open questions and research programmes for this new field of interest to researchers in computer science, ethics and quantum computation.\",\"PeriodicalId\":197336,\"journal\":{\"name\":\"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3461702.3462611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3461702.3462611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们开创了量子公平机器学习领域。我们对经典和量子公平机器学习算法之间的异同进行了比较分析,说明了当量子算法受到公平约束时,量子计算的独特特征如何改变度量、指标和补救策略。我们通过演示使用Grover搜索算法来满足施加在量子算法上的统计奇偶性约束,提出了量子公平机器学习的第一个结果。我们提供了在ε-容差范围内实现这种统计奇偶性所需的迭代的下界。我们使用量子度量将标准李普希茨条件下的个体公平性标准扩展到量子设置。当涉及量子信息处理和量子数据时,我们研究了机器学习环境中典型的公平度量的后果。最后,我们向计算机科学、伦理学和量子计算领域的研究人员提出了这个新领域的开放问题和研究计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum Fair Machine Learning
In this paper, we inaugurate the field of quantum fair machine learning. We undertake a comparative analysis of differences and similarities between classical and quantum fair machine learning algorithms, specifying how the unique features of quantum computation alter measures, metrics and remediation strategies when quantum algorithms are subject to fairness constraints. We present the first results in quantum fair machine learning by demonstrating the use of Grover's search algorithm to satisfy statistical parity constraints imposed on quantum algorithms. We provide lower-bounds on iterations needed to achieve such statistical parity within ε-tolerance. We extend canonical Lipschitz-conditioned individual fairness criteria to the quantum setting using quantum metrics. We examine the consequences for typical measures of fairness in machine learning context when quantum information processing and quantum data are involved. Finally, we propose open questions and research programmes for this new field of interest to researchers in computer science, ethics and quantum computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Beyond Reasonable Doubt: Improving Fairness in Budget-Constrained Decision Making using Confidence Thresholds Measuring Automated Influence: Between Empirical Evidence and Ethical Values Artificial Intelligence and the Purpose of Social Systems Ethically Compliant Planning within Moral Communities Co-design and Ethical Artificial Intelligence for Health: Myths and Misconceptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1