Kıvan¸c K¨ose, A. Enis, C¸etin, Uˇgur G¨ud¨ukbay, L. Onural
{"title":"(用于多分辨率网格分析和压缩的非矩形小波)","authors":"Kıvan¸c K¨ose, A. Enis, C¸etin, Uˇgur G¨ud¨ukbay, L. Onural","doi":"10.1117/12.666702","DOIUrl":null,"url":null,"abstract":"We propose a new set partitioning in hierarchical trees (SPIHT) based mesh compression framework. The 3D mesh is first transformed to 2D images on a regular grid structure. Then, this image-like representation is wavelet transformed and SPIHT is applied on the wavelet domain data. The method is progressive because the resolution of the reconstructed mesh can be changed by varying the length of the one-dimensional data stream created by SPIHT algorithm. Nearly perfect reconstruction is possible if all of the data stream is received","PeriodicalId":415037,"journal":{"name":"2006 IEEE 14th Signal Processing and Communications Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"(Nonrectangular Wavelets for Multiresolution Mesh Analysis and Compression)\",\"authors\":\"Kıvan¸c K¨ose, A. Enis, C¸etin, Uˇgur G¨ud¨ukbay, L. Onural\",\"doi\":\"10.1117/12.666702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new set partitioning in hierarchical trees (SPIHT) based mesh compression framework. The 3D mesh is first transformed to 2D images on a regular grid structure. Then, this image-like representation is wavelet transformed and SPIHT is applied on the wavelet domain data. The method is progressive because the resolution of the reconstructed mesh can be changed by varying the length of the one-dimensional data stream created by SPIHT algorithm. Nearly perfect reconstruction is possible if all of the data stream is received\",\"PeriodicalId\":415037,\"journal\":{\"name\":\"2006 IEEE 14th Signal Processing and Communications Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE 14th Signal Processing and Communications Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.666702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 14th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.666702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
(Nonrectangular Wavelets for Multiresolution Mesh Analysis and Compression)
We propose a new set partitioning in hierarchical trees (SPIHT) based mesh compression framework. The 3D mesh is first transformed to 2D images on a regular grid structure. Then, this image-like representation is wavelet transformed and SPIHT is applied on the wavelet domain data. The method is progressive because the resolution of the reconstructed mesh can be changed by varying the length of the one-dimensional data stream created by SPIHT algorithm. Nearly perfect reconstruction is possible if all of the data stream is received