连续和离散系统的分析

N. Watson, J. Arrillaga
{"title":"连续和离散系统的分析","authors":"N. Watson, J. Arrillaga","doi":"10.1049/PBPO039E_ch2","DOIUrl":null,"url":null,"abstract":"With the exceptions of a few auxiliary components, the electrical power system is a continuous system, which can be represented mathematically by a system of differential and algebraic equations. A convenient form of these equations is the state variable formulation, in which a system of n first-order linear differential equations results from an n order system. The state variable formulation is not unique and depends on the choice of state variables. The following state variable realisations have been described in this chapter: successive differentiation, controller canonical, observer canonical and diagonal canonical. Digital simulation is by nature a discrete time process and can only provide solutions for the differential and algebraic equations at discrete points in time, hence this requires the formulation of discrete systems. The discrete representation can always be expressed as a difference equation, where the output at a new time point is calculated from the output at previous time points and the inputs at the present and previous time points.","PeriodicalId":114635,"journal":{"name":"Power Systems Electromagnetic Transients Simulation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of continuous and discrete systems\",\"authors\":\"N. Watson, J. Arrillaga\",\"doi\":\"10.1049/PBPO039E_ch2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the exceptions of a few auxiliary components, the electrical power system is a continuous system, which can be represented mathematically by a system of differential and algebraic equations. A convenient form of these equations is the state variable formulation, in which a system of n first-order linear differential equations results from an n order system. The state variable formulation is not unique and depends on the choice of state variables. The following state variable realisations have been described in this chapter: successive differentiation, controller canonical, observer canonical and diagonal canonical. Digital simulation is by nature a discrete time process and can only provide solutions for the differential and algebraic equations at discrete points in time, hence this requires the formulation of discrete systems. The discrete representation can always be expressed as a difference equation, where the output at a new time point is calculated from the output at previous time points and the inputs at the present and previous time points.\",\"PeriodicalId\":114635,\"journal\":{\"name\":\"Power Systems Electromagnetic Transients Simulation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Power Systems Electromagnetic Transients Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/PBPO039E_ch2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Power Systems Electromagnetic Transients Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/PBPO039E_ch2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

除了少数辅助元件外,电力系统是一个连续系统,可以用微分方程和代数方程在数学上表示。这些方程的一种方便形式是状态变量公式,其中n个一阶线性微分方程的系统是由n阶系统得到的。状态变量的表达式不是唯一的,它取决于状态变量的选择。本章描述了以下状态变量的实现:连续微分、控制器正则、观测器正则和对角正则。数字仿真本质上是一个离散时间过程,只能提供离散时间点的微分方程和代数方程的解,因此需要离散系统的表述。离散表示总是可以表示为差分方程,其中新时间点的输出是由前一个时间点的输出和当前和前一个时间点的输入计算出来的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of continuous and discrete systems
With the exceptions of a few auxiliary components, the electrical power system is a continuous system, which can be represented mathematically by a system of differential and algebraic equations. A convenient form of these equations is the state variable formulation, in which a system of n first-order linear differential equations results from an n order system. The state variable formulation is not unique and depends on the choice of state variables. The following state variable realisations have been described in this chapter: successive differentiation, controller canonical, observer canonical and diagonal canonical. Digital simulation is by nature a discrete time process and can only provide solutions for the differential and algebraic equations at discrete points in time, hence this requires the formulation of discrete systems. The discrete representation can always be expressed as a difference equation, where the output at a new time point is calculated from the output at previous time points and the inputs at the present and previous time points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Steady-state assessment Control and protection State variable analysis Appendix B: Numerical integration Frequency-dependent network equivalents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1