人工智能辅助ISP超参数自动调优

Fa Xu, Zihao Liu, YanHeng Lu, Sicheng Li, Susong Xu, Yibo Fan, Yen-Kuang Chen
{"title":"人工智能辅助ISP超参数自动调优","authors":"Fa Xu, Zihao Liu, YanHeng Lu, Sicheng Li, Susong Xu, Yibo Fan, Yen-Kuang Chen","doi":"10.1109/AICAS57966.2023.10168574","DOIUrl":null,"url":null,"abstract":"Images and videos are vital visual information carriers, and the image signal processor (ISP) is an essential hardware component for capturing and processing these visual signals. ISPs convert raw data into high-quality color images, which requires various function modules to control different aspects of image quality. However, the results of these modules are interdependent and have crosstalk with each other, making it tedious and time-consuming for manual tuning to obtain a set of ideal parameter configurations to achieve stable performance. In this paper, we introduce xkISP, a self-developed open-source ISP project which includes both a C model and hardware implementation of an 8-stage ISP pipeline. Most importantly, we present a novel proxy function-based AI-assisted ISP tuning solution that is demonstrated to accelerate the ISP parameter configuration process and improve performance for both human vision and computer vision tasks.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-assisted ISP hyperparameter auto tuning\",\"authors\":\"Fa Xu, Zihao Liu, YanHeng Lu, Sicheng Li, Susong Xu, Yibo Fan, Yen-Kuang Chen\",\"doi\":\"10.1109/AICAS57966.2023.10168574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Images and videos are vital visual information carriers, and the image signal processor (ISP) is an essential hardware component for capturing and processing these visual signals. ISPs convert raw data into high-quality color images, which requires various function modules to control different aspects of image quality. However, the results of these modules are interdependent and have crosstalk with each other, making it tedious and time-consuming for manual tuning to obtain a set of ideal parameter configurations to achieve stable performance. In this paper, we introduce xkISP, a self-developed open-source ISP project which includes both a C model and hardware implementation of an 8-stage ISP pipeline. Most importantly, we present a novel proxy function-based AI-assisted ISP tuning solution that is demonstrated to accelerate the ISP parameter configuration process and improve performance for both human vision and computer vision tasks.\",\"PeriodicalId\":296649,\"journal\":{\"name\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS57966.2023.10168574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像和视频是重要的视觉信息载体,图像信号处理器(ISP)是捕获和处理这些视觉信号必不可少的硬件部件。isp将原始数据转换成高质量的彩色图像,这就需要各种功能模块来控制图像质量的不同方面。然而,这些模块的结果是相互依赖的,彼此之间存在串扰,为了获得一组理想的参数配置以实现稳定的性能,手动调优是繁琐而耗时的。在本文中,我们介绍了xkISP,一个自主开发的开源ISP项目,它包括一个8阶段ISP管道的C模型和硬件实现。最重要的是,我们提出了一种新的基于代理函数的人工智能辅助ISP调优解决方案,该解决方案被证明可以加速ISP参数配置过程,并提高人类视觉和计算机视觉任务的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI-assisted ISP hyperparameter auto tuning
Images and videos are vital visual information carriers, and the image signal processor (ISP) is an essential hardware component for capturing and processing these visual signals. ISPs convert raw data into high-quality color images, which requires various function modules to control different aspects of image quality. However, the results of these modules are interdependent and have crosstalk with each other, making it tedious and time-consuming for manual tuning to obtain a set of ideal parameter configurations to achieve stable performance. In this paper, we introduce xkISP, a self-developed open-source ISP project which includes both a C model and hardware implementation of an 8-stage ISP pipeline. Most importantly, we present a novel proxy function-based AI-assisted ISP tuning solution that is demonstrated to accelerate the ISP parameter configuration process and improve performance for both human vision and computer vision tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synaptic metaplasticity with multi-level memristive devices Unsupervised Learning of Spike-Timing-Dependent Plasticity Based on a Neuromorphic Implementation A Fully Differential 4-Bit Analog Compute-In-Memory Architecture for Inference Application Convergent Waveform Relaxation Schemes for the Transient Analysis of Associative ReLU Arrays Performance Assessment of an Extremely Energy-Efficient Binary Neural Network Using Adiabatic Superconductor Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1