T. Samak, R. Egan, Brian Bushnell, D. Gunter, A. Copeland, Zhong Wang
{"title":"基因组装配质量评估的自动异常值检测","authors":"T. Samak, R. Egan, Brian Bushnell, D. Gunter, A. Copeland, Zhong Wang","doi":"10.1109/eScience.2013.49","DOIUrl":null,"url":null,"abstract":"In this work we describe a method to automatically detect errors in de novo assembled genomes. The method extends a Bayesian assembly quality evaluation framework, ALE, which computes the likelihood of an assembly given a set of unassembled data. Starting from ALE output, this method applies outlier detection algorithms to identify the precise locations of assembly errors. We show results from a microbial genome with manually curated assembly errors. Our method detects all deletions, 82.3% of insertions, and 88.8% of single base substitutions. It was also able to detect an inversion error that spans more than 400 bases.","PeriodicalId":325272,"journal":{"name":"2013 IEEE 9th International Conference on e-Science","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic Outlier Detection for Genome Assembly Quality Assessment\",\"authors\":\"T. Samak, R. Egan, Brian Bushnell, D. Gunter, A. Copeland, Zhong Wang\",\"doi\":\"10.1109/eScience.2013.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we describe a method to automatically detect errors in de novo assembled genomes. The method extends a Bayesian assembly quality evaluation framework, ALE, which computes the likelihood of an assembly given a set of unassembled data. Starting from ALE output, this method applies outlier detection algorithms to identify the precise locations of assembly errors. We show results from a microbial genome with manually curated assembly errors. Our method detects all deletions, 82.3% of insertions, and 88.8% of single base substitutions. It was also able to detect an inversion error that spans more than 400 bases.\",\"PeriodicalId\":325272,\"journal\":{\"name\":\"2013 IEEE 9th International Conference on e-Science\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 9th International Conference on e-Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eScience.2013.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 9th International Conference on e-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2013.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Outlier Detection for Genome Assembly Quality Assessment
In this work we describe a method to automatically detect errors in de novo assembled genomes. The method extends a Bayesian assembly quality evaluation framework, ALE, which computes the likelihood of an assembly given a set of unassembled data. Starting from ALE output, this method applies outlier detection algorithms to identify the precise locations of assembly errors. We show results from a microbial genome with manually curated assembly errors. Our method detects all deletions, 82.3% of insertions, and 88.8% of single base substitutions. It was also able to detect an inversion error that spans more than 400 bases.