混沌神经网络的固定/预分配时间反同步

Haoyu Li, Leimin Wang
{"title":"混沌神经网络的固定/预分配时间反同步","authors":"Haoyu Li, Leimin Wang","doi":"10.1109/ICCSS53909.2021.9721990","DOIUrl":null,"url":null,"abstract":"This paper investigates a unified controller to solve the fixed-time anti-synchronization (FTAS) and preassigned-time anti-synchronization (PTAS) problems for chaotic neural networks. Under our controller, chaotic neural network can realize anti-synchronization within the fixed or preassigned time which greatly expands the practical application range of the anti-synchronization. In addition, sufficient conditions and time estimation on FTAS and PTAS are derived. Finally, the feasibility of the control scheme is proved via a numerical simulation.","PeriodicalId":435816,"journal":{"name":"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed-/Preassigned-Time Anti-Synchronization of Chaotic Neural Networks\",\"authors\":\"Haoyu Li, Leimin Wang\",\"doi\":\"10.1109/ICCSS53909.2021.9721990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates a unified controller to solve the fixed-time anti-synchronization (FTAS) and preassigned-time anti-synchronization (PTAS) problems for chaotic neural networks. Under our controller, chaotic neural network can realize anti-synchronization within the fixed or preassigned time which greatly expands the practical application range of the anti-synchronization. In addition, sufficient conditions and time estimation on FTAS and PTAS are derived. Finally, the feasibility of the control scheme is proved via a numerical simulation.\",\"PeriodicalId\":435816,\"journal\":{\"name\":\"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSS53909.2021.9721990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSS53909.2021.9721990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种统一控制器来解决混沌神经网络的定时反同步(FTAS)和预分配时间反同步(PTAS)问题。在该控制器的控制下,混沌神经网络可以在固定或预先设定的时间内实现反同步,极大地扩展了反同步的实际应用范围。此外,还推导了自由贸易区和自由贸易区的充分条件和时间估计。最后,通过数值仿真验证了该控制方案的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fixed-/Preassigned-Time Anti-Synchronization of Chaotic Neural Networks
This paper investigates a unified controller to solve the fixed-time anti-synchronization (FTAS) and preassigned-time anti-synchronization (PTAS) problems for chaotic neural networks. Under our controller, chaotic neural network can realize anti-synchronization within the fixed or preassigned time which greatly expands the practical application range of the anti-synchronization. In addition, sufficient conditions and time estimation on FTAS and PTAS are derived. Finally, the feasibility of the control scheme is proved via a numerical simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Prediction Model of Key Personnel's Food Crime Based on Stacking Model Fusion A Multidimensional System Architecture Oriented to the Data Space of Manufacturing Enterprises Semi-Supervised Deep Clustering with Soft Membership Affinity Moving Target Shooting Control Policy Based on Deep Reinforcement Learning Prediction of ship fuel consumption based on Elastic network regression model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1