自动定位和修正线段错误

DAR '12 Pub Date : 2012-12-16 DOI:10.1145/2432553.2432555
Anand Mishra, Naveen Sankaran, Viresh Ranjan, C. V. Jawahar
{"title":"自动定位和修正线段错误","authors":"Anand Mishra, Naveen Sankaran, Viresh Ranjan, C. V. Jawahar","doi":"10.1145/2432553.2432555","DOIUrl":null,"url":null,"abstract":"Text line segmentation is a basic step in any OCR system. Its failure deteriorates the performance of OCR engines. This is especially true for the Indian languages due to the nature of scripts. Many segmentation algorithms are proposed in literature. Often these algorithms fail to adapt dynamically to a given page and thus tend to yield poor segmentation for some specific regions or some specific pages. In this work we design a text line segmentation post processor which automatically localizes and corrects the segmentation errors. The proposed segmentation post processor, which works in a \"learning by examples\" framework, is not only independent to segmentation algorithms but also robust to the diversity of scanned pages.\n We show over 5% improvement in text line segmentation on a large dataset of scanned pages for multiple Indian languages.","PeriodicalId":410986,"journal":{"name":"DAR '12","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic localization and correction of line segmentation errors\",\"authors\":\"Anand Mishra, Naveen Sankaran, Viresh Ranjan, C. V. Jawahar\",\"doi\":\"10.1145/2432553.2432555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text line segmentation is a basic step in any OCR system. Its failure deteriorates the performance of OCR engines. This is especially true for the Indian languages due to the nature of scripts. Many segmentation algorithms are proposed in literature. Often these algorithms fail to adapt dynamically to a given page and thus tend to yield poor segmentation for some specific regions or some specific pages. In this work we design a text line segmentation post processor which automatically localizes and corrects the segmentation errors. The proposed segmentation post processor, which works in a \\\"learning by examples\\\" framework, is not only independent to segmentation algorithms but also robust to the diversity of scanned pages.\\n We show over 5% improvement in text line segmentation on a large dataset of scanned pages for multiple Indian languages.\",\"PeriodicalId\":410986,\"journal\":{\"name\":\"DAR '12\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DAR '12\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2432553.2432555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAR '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2432553.2432555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

文本线分割是任何OCR系统的基本步骤。它的失效降低了OCR发动机的性能。由于文字的性质,印度语言尤其如此。文献中提出了许多分割算法。通常,这些算法不能动态地适应给定的页面,因此往往对某些特定区域或某些特定页面产生较差的分割。本文设计了一种文本行分割后置处理器,可以自动定位和修正文本行分割错误。所提出的分割后处理器在“样例学习”框架下工作,不仅独立于分割算法,而且对扫描页面的多样性具有鲁棒性。我们在多个印度语言的扫描页面的大型数据集上显示了超过5%的文本行分割改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic localization and correction of line segmentation errors
Text line segmentation is a basic step in any OCR system. Its failure deteriorates the performance of OCR engines. This is especially true for the Indian languages due to the nature of scripts. Many segmentation algorithms are proposed in literature. Often these algorithms fail to adapt dynamically to a given page and thus tend to yield poor segmentation for some specific regions or some specific pages. In this work we design a text line segmentation post processor which automatically localizes and corrects the segmentation errors. The proposed segmentation post processor, which works in a "learning by examples" framework, is not only independent to segmentation algorithms but also robust to the diversity of scanned pages. We show over 5% improvement in text line segmentation on a large dataset of scanned pages for multiple Indian languages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model based table cell detection and content extraction from degraded document images Assamese online handwritten digit recognition system using hidden Markov models On performance analysis of end-to-end OCR systems of Indic scripts A data acquisition and analysis system for palm leaf documents in Telugu Bangla date field extraction in offline handwritten documents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1