神经网络在立体标定中的应用分析与改进

Y. Xing, Jing Sun, Zhentong Chen
{"title":"神经网络在立体标定中的应用分析与改进","authors":"Y. Xing, Jing Sun, Zhentong Chen","doi":"10.1109/ICNC.2007.240","DOIUrl":null,"url":null,"abstract":"In this paper, CCD cameras are calibrated implicitly using BP neural network by means of its ability to fit the complicated nonlinear mapping relation. Dense sample data is acquired by using high precisely numerical control platform, and the variances error (PVE) is adopted during training the neural network. The error percentages obtained from our set-up are limitedly better than those obtained through mean square error (MSE). The system is generalization enough for most machine-vision applications and the calibrated system can reach acceptable precision of 3D measurement standard. It is expected that, with this approach, we can maintain the major advantage of linear methods and obtain improved accuracy without any complicated mathematical modeling process thank to nonlinear learning capability of neural networks. The value p needs to be decided by experiments, and the reconstruction images will be distorted if the value is more than 6.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Analyzing and Improving of Neural Networks used in Stereo Calibration\",\"authors\":\"Y. Xing, Jing Sun, Zhentong Chen\",\"doi\":\"10.1109/ICNC.2007.240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, CCD cameras are calibrated implicitly using BP neural network by means of its ability to fit the complicated nonlinear mapping relation. Dense sample data is acquired by using high precisely numerical control platform, and the variances error (PVE) is adopted during training the neural network. The error percentages obtained from our set-up are limitedly better than those obtained through mean square error (MSE). The system is generalization enough for most machine-vision applications and the calibrated system can reach acceptable precision of 3D measurement standard. It is expected that, with this approach, we can maintain the major advantage of linear methods and obtain improved accuracy without any complicated mathematical modeling process thank to nonlinear learning capability of neural networks. The value p needs to be decided by experiments, and the reconstruction images will be distorted if the value is more than 6.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

利用BP神经网络对复杂的非线性映射关系的拟合能力,对CCD相机进行隐式标定。采用高精度数控平台采集密集样本数据,在训练神经网络时采用方差误差(PVE)。从我们的设置中获得的误差百分比有限地优于通过均方误差(MSE)获得的误差百分比。该系统具有足够的通用性,适用于大多数机器视觉应用,标定后的系统可以达到可接受的三维测量标准精度。利用神经网络的非线性学习能力,既能保持线性方法的主要优点,又能在不需要复杂的数学建模过程的情况下获得更高的精度。p的值需要通过实验来确定,如果p的值大于6,重构图像就会失真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analyzing and Improving of Neural Networks used in Stereo Calibration
In this paper, CCD cameras are calibrated implicitly using BP neural network by means of its ability to fit the complicated nonlinear mapping relation. Dense sample data is acquired by using high precisely numerical control platform, and the variances error (PVE) is adopted during training the neural network. The error percentages obtained from our set-up are limitedly better than those obtained through mean square error (MSE). The system is generalization enough for most machine-vision applications and the calibrated system can reach acceptable precision of 3D measurement standard. It is expected that, with this approach, we can maintain the major advantage of linear methods and obtain improved accuracy without any complicated mathematical modeling process thank to nonlinear learning capability of neural networks. The value p needs to be decided by experiments, and the reconstruction images will be distorted if the value is more than 6.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Evaluation of Color Patterns Based on Rough Sets Uniqueness of Linear Combinations of Ridge Functions PID Neural Network Temperature Control System in Plastic Injecting-moulding Machine The Study of Membrane Fouling Modeling Method Based on Wavelet Neural Network for Sewage Treatment Membrane Bioreactor Simulation and Research of the PCB Vias Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1