用田口法对进化算法进行整定,并应用于电机尺寸的确定

J. Hippolyte, C. Bloch, P. Chatonnay, C. Espanet, D. Chamagne, G. Wimmer
{"title":"用田口法对进化算法进行整定,并应用于电机尺寸的确定","authors":"J. Hippolyte, C. Bloch, P. Chatonnay, C. Espanet, D. Chamagne, G. Wimmer","doi":"10.1145/1456223.1456279","DOIUrl":null,"url":null,"abstract":"This paper presents an original method of permanent magnet motor optimal design developped by both Electrical Engineering and Computer Science laboratories. An Evolutionary Algorithm combining Genetic Algorithms and Multiagent Systems is used. This Genetic Multiagent System parameters are determined using a robust design method based on the Taguchi approach. The quality of the algorithm is evaluated considering the multiobjective quality of the solutions it delivers on a permanent magnet machine constrained optimization. Contradictory objectives as efficiency and weight have a large influence on the design of electrical machines. Performances of the resulting tuned up algorithm are compared with previous results from the authors.","PeriodicalId":309453,"journal":{"name":"International Conference on Soft Computing as Transdisciplinary Science and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Tuning an evolutionary algorithm with taguchi methods and application to the dimensioning of an electrical motor\",\"authors\":\"J. Hippolyte, C. Bloch, P. Chatonnay, C. Espanet, D. Chamagne, G. Wimmer\",\"doi\":\"10.1145/1456223.1456279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an original method of permanent magnet motor optimal design developped by both Electrical Engineering and Computer Science laboratories. An Evolutionary Algorithm combining Genetic Algorithms and Multiagent Systems is used. This Genetic Multiagent System parameters are determined using a robust design method based on the Taguchi approach. The quality of the algorithm is evaluated considering the multiobjective quality of the solutions it delivers on a permanent magnet machine constrained optimization. Contradictory objectives as efficiency and weight have a large influence on the design of electrical machines. Performances of the resulting tuned up algorithm are compared with previous results from the authors.\",\"PeriodicalId\":309453,\"journal\":{\"name\":\"International Conference on Soft Computing as Transdisciplinary Science and Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Soft Computing as Transdisciplinary Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1456223.1456279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Soft Computing as Transdisciplinary Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1456223.1456279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了一种由电气工程实验室和计算机科学实验室共同开发的永磁电机优化设计方法。采用遗传算法和多智能体系统相结合的进化算法。采用基于田口法的鲁棒设计方法确定遗传多智能体系统参数。考虑该算法在永磁电机约束优化问题上解的多目标质量,对算法的质量进行了评价。效率和重量等相互矛盾的目标对电机的设计有很大的影响。最后将调优算法的性能与作者之前的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tuning an evolutionary algorithm with taguchi methods and application to the dimensioning of an electrical motor
This paper presents an original method of permanent magnet motor optimal design developped by both Electrical Engineering and Computer Science laboratories. An Evolutionary Algorithm combining Genetic Algorithms and Multiagent Systems is used. This Genetic Multiagent System parameters are determined using a robust design method based on the Taguchi approach. The quality of the algorithm is evaluated considering the multiobjective quality of the solutions it delivers on a permanent magnet machine constrained optimization. Contradictory objectives as efficiency and weight have a large influence on the design of electrical machines. Performances of the resulting tuned up algorithm are compared with previous results from the authors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Novel cache management strategy for semantic caching in mobile environment Evolutionary multiobjective optimization and multiobjective fuzzy system design Network security simulation and evaluation A software based approach for autonomous projectile attitude and position estimation Fatigue level estimation of bill based on feature-selected acoustic energy pattern by using supervised SOM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1