{"title":"基于mapreduce的人工神经网络音乐流媒体服务预测","authors":"Min Chen","doi":"10.1109/UEMCON47517.2019.8993063","DOIUrl":null,"url":null,"abstract":"The problem on accurately predicting customer churn is critical to the long-term success in subscription business like music, games, magazines etc. It is quite challenging to design machine learning model to predict the customer churn accurately due to the large volume of the time-series data and the temporal issues of the data. In this paper, a parallel artificial neural network is proposed to create a highly-accurate customer churn model on a large customer dataset. The proposed model has achieved significant improvement in the accuracy of churn prediction. The scalability and effectiveness of the proposed algorithm is also studied.","PeriodicalId":187022,"journal":{"name":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"9 Suppl 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Music Streaming Service Prediction with MapReduce-based Artificial Neural Network\",\"authors\":\"Min Chen\",\"doi\":\"10.1109/UEMCON47517.2019.8993063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem on accurately predicting customer churn is critical to the long-term success in subscription business like music, games, magazines etc. It is quite challenging to design machine learning model to predict the customer churn accurately due to the large volume of the time-series data and the temporal issues of the data. In this paper, a parallel artificial neural network is proposed to create a highly-accurate customer churn model on a large customer dataset. The proposed model has achieved significant improvement in the accuracy of churn prediction. The scalability and effectiveness of the proposed algorithm is also studied.\",\"PeriodicalId\":187022,\"journal\":{\"name\":\"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"volume\":\"9 Suppl 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UEMCON47517.2019.8993063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON47517.2019.8993063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Music Streaming Service Prediction with MapReduce-based Artificial Neural Network
The problem on accurately predicting customer churn is critical to the long-term success in subscription business like music, games, magazines etc. It is quite challenging to design machine learning model to predict the customer churn accurately due to the large volume of the time-series data and the temporal issues of the data. In this paper, a parallel artificial neural network is proposed to create a highly-accurate customer churn model on a large customer dataset. The proposed model has achieved significant improvement in the accuracy of churn prediction. The scalability and effectiveness of the proposed algorithm is also studied.