数据量化下贝叶斯假设检验的渐近性能损失

S. Jana
{"title":"数据量化下贝叶斯假设检验的渐近性能损失","authors":"S. Jana","doi":"10.1109/CISS.2009.5054824","DOIUrl":null,"url":null,"abstract":"In a variety of decision systems, processing is performed not on the underlying signal but on a quantized version. Accordingly, assuming fine quantization, Poor observed a quadratic variation in f-divergences with smooth f. In contrast, we derive a quadratic behavior in the Bayesian probability of error, which corresponds to a nonsmooth f, thereby advancing the state of the art. Unlike Poor's purely variational method, we solve a novel cube-slicing problem, and convert a volume integral to a surface integral in the course of our analysis. In this paper, we elaborate our method, and sharpen our result, a preliminary version of which were outlined in our previous work.","PeriodicalId":433796,"journal":{"name":"2009 43rd Annual Conference on Information Sciences and Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic performance loss in bayesian hypothesis testing under data quantization\",\"authors\":\"S. Jana\",\"doi\":\"10.1109/CISS.2009.5054824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a variety of decision systems, processing is performed not on the underlying signal but on a quantized version. Accordingly, assuming fine quantization, Poor observed a quadratic variation in f-divergences with smooth f. In contrast, we derive a quadratic behavior in the Bayesian probability of error, which corresponds to a nonsmooth f, thereby advancing the state of the art. Unlike Poor's purely variational method, we solve a novel cube-slicing problem, and convert a volume integral to a surface integral in the course of our analysis. In this paper, we elaborate our method, and sharpen our result, a preliminary version of which were outlined in our previous work.\",\"PeriodicalId\":433796,\"journal\":{\"name\":\"2009 43rd Annual Conference on Information Sciences and Systems\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 43rd Annual Conference on Information Sciences and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2009.5054824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 43rd Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2009.5054824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在各种决策系统中,处理不是在底层信号上执行,而是在量化版本上执行。因此,假设精细量化,Poor观察到平滑f的f-散度的二次变化。相反,我们推导出贝叶斯误差概率的二次行为,对应于非光滑f,从而推进了目前的技术水平。与Poor的纯变分方法不同,我们解决了一个新的立方体切片问题,并在分析过程中将体积积分转换为表面积分。在本文中,我们详细阐述了我们的方法,并改进了我们的结果,我们在以前的工作中概述了我们的初步版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asymptotic performance loss in bayesian hypothesis testing under data quantization
In a variety of decision systems, processing is performed not on the underlying signal but on a quantized version. Accordingly, assuming fine quantization, Poor observed a quadratic variation in f-divergences with smooth f. In contrast, we derive a quadratic behavior in the Bayesian probability of error, which corresponds to a nonsmooth f, thereby advancing the state of the art. Unlike Poor's purely variational method, we solve a novel cube-slicing problem, and convert a volume integral to a surface integral in the course of our analysis. In this paper, we elaborate our method, and sharpen our result, a preliminary version of which were outlined in our previous work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular recognition as an information channel: The role of conformational changes Extrinsic tree decoding Message transmission and state estimation over Gaussian broadcast channels Iteratively re-weighted least squares for sparse signal reconstruction from noisy measurements Speech enhancement using the multistage Wiener filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1