{"title":"使用性能签名和软件再生技术缓解战术manet中的蠕虫","authors":"Alberto Avritzer, R. Cole, E. Weyuker","doi":"10.1145/1216993.1217023","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new approach for mitigation of worm propagation through tactical Mobile Ad-Hoc Networks (MANETs) which is based upon performance signatures and software rejuvenation. Three application performance signature and software rejuvenation algorithms are proposed and analyzed. These algorithms monitor critical applications' responsiveness and trigger actions for software rejuvenation when host resources degrade due to a co-resident worm competing for host resources. We analyze the effectiveness of our algorithms through analytic modeling and detailed, extensive simulation studies. The key performance metrics investigated are application response time, mean time between rejuvenations and the steady state probability of host infection. We also use simulation models to investigate several design and parameter tuning issues. We investigate the relationship between the rate at which the application performance monitors can detect out-of-specification applications and the rate of worm propagation in the network.","PeriodicalId":235512,"journal":{"name":"Workshop on Software and Performance","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Using performance signatures and software rejuvenation for worm mitigation in tactical MANETs\",\"authors\":\"Alberto Avritzer, R. Cole, E. Weyuker\",\"doi\":\"10.1145/1216993.1217023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new approach for mitigation of worm propagation through tactical Mobile Ad-Hoc Networks (MANETs) which is based upon performance signatures and software rejuvenation. Three application performance signature and software rejuvenation algorithms are proposed and analyzed. These algorithms monitor critical applications' responsiveness and trigger actions for software rejuvenation when host resources degrade due to a co-resident worm competing for host resources. We analyze the effectiveness of our algorithms through analytic modeling and detailed, extensive simulation studies. The key performance metrics investigated are application response time, mean time between rejuvenations and the steady state probability of host infection. We also use simulation models to investigate several design and parameter tuning issues. We investigate the relationship between the rate at which the application performance monitors can detect out-of-specification applications and the rate of worm propagation in the network.\",\"PeriodicalId\":235512,\"journal\":{\"name\":\"Workshop on Software and Performance\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Software and Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1216993.1217023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Software and Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1216993.1217023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using performance signatures and software rejuvenation for worm mitigation in tactical MANETs
In this paper, we propose a new approach for mitigation of worm propagation through tactical Mobile Ad-Hoc Networks (MANETs) which is based upon performance signatures and software rejuvenation. Three application performance signature and software rejuvenation algorithms are proposed and analyzed. These algorithms monitor critical applications' responsiveness and trigger actions for software rejuvenation when host resources degrade due to a co-resident worm competing for host resources. We analyze the effectiveness of our algorithms through analytic modeling and detailed, extensive simulation studies. The key performance metrics investigated are application response time, mean time between rejuvenations and the steady state probability of host infection. We also use simulation models to investigate several design and parameter tuning issues. We investigate the relationship between the rate at which the application performance monitors can detect out-of-specification applications and the rate of worm propagation in the network.