{"title":"微创手术机器人的优化规划","authors":"L. Adhami, È. Coste-Manière","doi":"10.1109/TRA.2003.817061","DOIUrl":null,"url":null,"abstract":"System to program core cells in a memory device without over-programming. The system includes a method for programming a voltage threshold (Vt) level of a core cell in a memory device. The method comprises steps of determining a desired Vt for the core cell, programming a portion of the Vt of the core cell using a selected programming strength, verifying that the portion of the Vt is successfully programmed, adjusting the selected programming strength, and repeating the step of programming, verifying, and adjusting until the Vt of the core cell is substantially equal to the desired Vt.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"100","resultStr":"{\"title\":\"Optimal planning for minimally invasive surgical robots\",\"authors\":\"L. Adhami, È. Coste-Manière\",\"doi\":\"10.1109/TRA.2003.817061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"System to program core cells in a memory device without over-programming. The system includes a method for programming a voltage threshold (Vt) level of a core cell in a memory device. The method comprises steps of determining a desired Vt for the core cell, programming a portion of the Vt of the core cell using a selected programming strength, verifying that the portion of the Vt is successfully programmed, adjusting the selected programming strength, and repeating the step of programming, verifying, and adjusting until the Vt of the core cell is substantially equal to the desired Vt.\",\"PeriodicalId\":161449,\"journal\":{\"name\":\"IEEE Trans. Robotics Autom.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"100\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Robotics Autom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRA.2003.817061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRA.2003.817061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal planning for minimally invasive surgical robots
System to program core cells in a memory device without over-programming. The system includes a method for programming a voltage threshold (Vt) level of a core cell in a memory device. The method comprises steps of determining a desired Vt for the core cell, programming a portion of the Vt of the core cell using a selected programming strength, verifying that the portion of the Vt is successfully programmed, adjusting the selected programming strength, and repeating the step of programming, verifying, and adjusting until the Vt of the core cell is substantially equal to the desired Vt.