{"title":"CuSP:一个可定制的分布式图分析流边缘分区器","authors":"Loc Hoang, Roshan Dathathri, G. Gill, K. Pingali","doi":"10.1109/IPDPS.2019.00054","DOIUrl":null,"url":null,"abstract":"Graph analytics systems must analyze graphs with billions of vertices and edges which require several terabytes of storage. Distributed-memory clusters are often used for analyzing such large graphs since the main memory of a single machine is usually restricted to a few hundreds of gigabytes. This requires partitioning the graph among the machines in the cluster. Existing graph analytics systems usually come with a built-in partitioner that incorporates a particular partitioning policy, but the best partitioning policy is dependent on the algorithm, input graph, and platform. Therefore, built-in partitioners are not sufficiently flexible. Stand-alone graph partitioners are available, but they too implement only a small number of partitioning policies. This paper presents CuSP, a fast streaming edge partitioning framework which permits users to specify the desired partitioning policy at a high level of abstraction and generates high-quality graph partitions fast. For example, it can partition wdc12, the largest publicly available web-crawl graph, with 4 billion vertices and 129 billion edges, in under 2 minutes for clusters with 128 machines. Our experiments show that it can produce quality partitions 6× faster on average than the state-of-the-art stand-alone partitioner in the literature while supporting a wider range of partitioning policies.","PeriodicalId":403406,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"CuSP: A Customizable Streaming Edge Partitioner for Distributed Graph Analytics\",\"authors\":\"Loc Hoang, Roshan Dathathri, G. Gill, K. Pingali\",\"doi\":\"10.1109/IPDPS.2019.00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph analytics systems must analyze graphs with billions of vertices and edges which require several terabytes of storage. Distributed-memory clusters are often used for analyzing such large graphs since the main memory of a single machine is usually restricted to a few hundreds of gigabytes. This requires partitioning the graph among the machines in the cluster. Existing graph analytics systems usually come with a built-in partitioner that incorporates a particular partitioning policy, but the best partitioning policy is dependent on the algorithm, input graph, and platform. Therefore, built-in partitioners are not sufficiently flexible. Stand-alone graph partitioners are available, but they too implement only a small number of partitioning policies. This paper presents CuSP, a fast streaming edge partitioning framework which permits users to specify the desired partitioning policy at a high level of abstraction and generates high-quality graph partitions fast. For example, it can partition wdc12, the largest publicly available web-crawl graph, with 4 billion vertices and 129 billion edges, in under 2 minutes for clusters with 128 machines. Our experiments show that it can produce quality partitions 6× faster on average than the state-of-the-art stand-alone partitioner in the literature while supporting a wider range of partitioning policies.\",\"PeriodicalId\":403406,\"journal\":{\"name\":\"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2019.00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2019.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CuSP: A Customizable Streaming Edge Partitioner for Distributed Graph Analytics
Graph analytics systems must analyze graphs with billions of vertices and edges which require several terabytes of storage. Distributed-memory clusters are often used for analyzing such large graphs since the main memory of a single machine is usually restricted to a few hundreds of gigabytes. This requires partitioning the graph among the machines in the cluster. Existing graph analytics systems usually come with a built-in partitioner that incorporates a particular partitioning policy, but the best partitioning policy is dependent on the algorithm, input graph, and platform. Therefore, built-in partitioners are not sufficiently flexible. Stand-alone graph partitioners are available, but they too implement only a small number of partitioning policies. This paper presents CuSP, a fast streaming edge partitioning framework which permits users to specify the desired partitioning policy at a high level of abstraction and generates high-quality graph partitions fast. For example, it can partition wdc12, the largest publicly available web-crawl graph, with 4 billion vertices and 129 billion edges, in under 2 minutes for clusters with 128 machines. Our experiments show that it can produce quality partitions 6× faster on average than the state-of-the-art stand-alone partitioner in the literature while supporting a wider range of partitioning policies.