基于参数变化和频域严重性因子的大型海上风电场开关运行仿真

A. Holdyk, Joachim Holboell, I. Arana, Asger Jensen
{"title":"基于参数变化和频域严重性因子的大型海上风电场开关运行仿真","authors":"A. Holdyk, Joachim Holboell, I. Arana, Asger Jensen","doi":"10.1109/UPEC.2012.6398589","DOIUrl":null,"url":null,"abstract":"Transient voltages resulting from switching operations depend on an interaction between the breaker, the transformer, cables and a neighbourhood grid and imply a risk for the transformer and other components. In this paper the Frequency Domain Severity Factor (FDSF) is used to assess the severity of electrical stress imposed on wind turbine transformers by voltage waveforms produced during switching operations. The method is implemented in Matlab together with automatic and systematic variation of parameters. Simulations of a radial energization are performed on a 90MVA offshore wind farm model implemented in ATP-EMTP using standard component models and further validated against measurements. The results show the range of overvoltages on the transformer terminals as well as the corresponding FSDF for all turbines under a number of varying parameters. The maximum FDSF of 1.235 and frequency of 445 kHz has been found on the low voltage side of the transformer at the last wind turbine in the neighbouring radial to the one being energized.","PeriodicalId":326950,"journal":{"name":"2012 47th International Universities Power Engineering Conference (UPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Switching operation simulations in a large offshore wind farm with use of parametric variation and Frequency Domain Severity Factor\",\"authors\":\"A. Holdyk, Joachim Holboell, I. Arana, Asger Jensen\",\"doi\":\"10.1109/UPEC.2012.6398589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transient voltages resulting from switching operations depend on an interaction between the breaker, the transformer, cables and a neighbourhood grid and imply a risk for the transformer and other components. In this paper the Frequency Domain Severity Factor (FDSF) is used to assess the severity of electrical stress imposed on wind turbine transformers by voltage waveforms produced during switching operations. The method is implemented in Matlab together with automatic and systematic variation of parameters. Simulations of a radial energization are performed on a 90MVA offshore wind farm model implemented in ATP-EMTP using standard component models and further validated against measurements. The results show the range of overvoltages on the transformer terminals as well as the corresponding FSDF for all turbines under a number of varying parameters. The maximum FDSF of 1.235 and frequency of 445 kHz has been found on the low voltage side of the transformer at the last wind turbine in the neighbouring radial to the one being energized.\",\"PeriodicalId\":326950,\"journal\":{\"name\":\"2012 47th International Universities Power Engineering Conference (UPEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 47th International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC.2012.6398589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 47th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2012.6398589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

开关操作产生的瞬态电压取决于断路器、变压器、电缆和邻近电网之间的相互作用,对变压器和其他部件意味着危险。本文采用频域严重性因子(FDSF)来评估风力发电机变压器在开关操作过程中产生的电压波形所施加的电应力的严重程度。该方法在Matlab中实现,并实现了参数的自动系统变化。在ATP-EMTP中实现的90MVA海上风电场模型上,使用标准组件模型进行了径向通电模拟,并根据测量结果进行了进一步验证。结果显示了在许多不同参数下,所有涡轮机的变压器端子过电压范围以及相应的FSDF。最大FDSF为1.235,频率为445 kHz,在与被通电的风力涡轮机相邻的最后一个风力涡轮机的变压器低压侧被发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Switching operation simulations in a large offshore wind farm with use of parametric variation and Frequency Domain Severity Factor
Transient voltages resulting from switching operations depend on an interaction between the breaker, the transformer, cables and a neighbourhood grid and imply a risk for the transformer and other components. In this paper the Frequency Domain Severity Factor (FDSF) is used to assess the severity of electrical stress imposed on wind turbine transformers by voltage waveforms produced during switching operations. The method is implemented in Matlab together with automatic and systematic variation of parameters. Simulations of a radial energization are performed on a 90MVA offshore wind farm model implemented in ATP-EMTP using standard component models and further validated against measurements. The results show the range of overvoltages on the transformer terminals as well as the corresponding FSDF for all turbines under a number of varying parameters. The maximum FDSF of 1.235 and frequency of 445 kHz has been found on the low voltage side of the transformer at the last wind turbine in the neighbouring radial to the one being energized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance evaluation of smart metering infrastructure using simulation tool Active power control from large offshore wind farms Performance study of distributed state estimation algorithms on the HiPerDNO HPC platform Current-sensoreless Boost converter for Maximum Power Tracking of thermoelectric generators Adaptive NeuroFuzzy Legendre based damping control paradigm for SSSC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1