压缩大型和松散的社区

V. Chandrashekar, Shailesh Kumar, C. V. Jawahar
{"title":"压缩大型和松散的社区","authors":"V. Chandrashekar, Shailesh Kumar, C. V. Jawahar","doi":"10.1109/ACPR.2013.137","DOIUrl":null,"url":null,"abstract":"Detecting compact overlapping communities in large networks is an important pattern recognition problem with applications in many domains. Most community detection algorithms trade-off between community sizes, their compactness and the scalability of finding communities. Clique Percolation Method (CPM) and Local Fitness Maximization (LFM) are two prominent and commonly used overlapping community detection methods that scale with large networks. However, significant number of communities found by them are large, noisy, and loose. In this paper, we propose a general algorithm that takes such large and loose communities generated by any method and refines them into compact communities in a systematic fashion. We define a new measure of community-ness based on eigenvector centrality, identify loose communities using this measure and propose an algorithm for partitioning such loose communities into compact communities. We refine the communities found by CPM and LFM using our method and show their effectiveness compared to the original communities in a recommendation engine task.","PeriodicalId":365633,"journal":{"name":"2013 2nd IAPR Asian Conference on Pattern Recognition","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compacting Large and Loose Communities\",\"authors\":\"V. Chandrashekar, Shailesh Kumar, C. V. Jawahar\",\"doi\":\"10.1109/ACPR.2013.137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting compact overlapping communities in large networks is an important pattern recognition problem with applications in many domains. Most community detection algorithms trade-off between community sizes, their compactness and the scalability of finding communities. Clique Percolation Method (CPM) and Local Fitness Maximization (LFM) are two prominent and commonly used overlapping community detection methods that scale with large networks. However, significant number of communities found by them are large, noisy, and loose. In this paper, we propose a general algorithm that takes such large and loose communities generated by any method and refines them into compact communities in a systematic fashion. We define a new measure of community-ness based on eigenvector centrality, identify loose communities using this measure and propose an algorithm for partitioning such loose communities into compact communities. We refine the communities found by CPM and LFM using our method and show their effectiveness compared to the original communities in a recommendation engine task.\",\"PeriodicalId\":365633,\"journal\":{\"name\":\"2013 2nd IAPR Asian Conference on Pattern Recognition\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 2nd IAPR Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2013.137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 2nd IAPR Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2013.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型网络中紧密重叠社区的检测是一个重要的模式识别问题,在许多领域都有应用。大多数社区检测算法在社区大小、紧凑性和发现社区的可扩展性之间进行权衡。Clique peration Method (CPM)和Local Fitness Maximization (LFM)是两种重要且常用的大型网络重叠社区检测方法。然而,他们发现的大量社区规模大、嘈杂、松散。在本文中,我们提出了一种通用算法,该算法可以将任何方法生成的如此大且松散的社区以系统的方式精炼成紧凑的社区。我们定义了一种基于特征向量中心性的新的社区度量,利用该度量来识别松散社区,并提出了一种将松散社区划分为紧密社区的算法。我们使用我们的方法对CPM和LFM发现的社区进行了细化,并在推荐引擎任务中与原始社区进行了比较,展示了它们的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compacting Large and Loose Communities
Detecting compact overlapping communities in large networks is an important pattern recognition problem with applications in many domains. Most community detection algorithms trade-off between community sizes, their compactness and the scalability of finding communities. Clique Percolation Method (CPM) and Local Fitness Maximization (LFM) are two prominent and commonly used overlapping community detection methods that scale with large networks. However, significant number of communities found by them are large, noisy, and loose. In this paper, we propose a general algorithm that takes such large and loose communities generated by any method and refines them into compact communities in a systematic fashion. We define a new measure of community-ness based on eigenvector centrality, identify loose communities using this measure and propose an algorithm for partitioning such loose communities into compact communities. We refine the communities found by CPM and LFM using our method and show their effectiveness compared to the original communities in a recommendation engine task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Compensation of Radial Distortion by Minimizing Entropy of Histogram of Oriented Gradients A Robust and Efficient Minutia-Based Fingerprint Matching Algorithm Sclera Recognition - A Survey A Non-local Sparse Model for Intrinsic Images Classification Based on Boolean Algebra and Its Application to the Prediction of Recurrence of Liver Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1