海报:我在室内还是室外?

Valentin Radu, P. Katsikouli, Rik Sarkar, M. Marina
{"title":"海报:我在室内还是室外?","authors":"Valentin Radu, P. Katsikouli, Rik Sarkar, M. Marina","doi":"10.1145/2639108.2642916","DOIUrl":null,"url":null,"abstract":"The environmental context of a mobile device determines where/how it is used, which can be exploited for efficient operation and better usability. In this work we describe a general method using only the lightweight sensors on a smartphone to detect if a device is indoor or outdoor. Using semi-supervised machine learning techniques, our method automatically learns characteristics of new environments and devices, thereby achieves detection accuracy of over 90% even in unfamiliar circumstances. Therefore, it easily outperforms existing indoor-outdoor detection techniques based on static algorithms, or relying on energy hungry and unreliable GPS.","PeriodicalId":331897,"journal":{"name":"Proceedings of the 20th annual international conference on Mobile computing and networking","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Poster: am i indoor or outdoor?\",\"authors\":\"Valentin Radu, P. Katsikouli, Rik Sarkar, M. Marina\",\"doi\":\"10.1145/2639108.2642916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The environmental context of a mobile device determines where/how it is used, which can be exploited for efficient operation and better usability. In this work we describe a general method using only the lightweight sensors on a smartphone to detect if a device is indoor or outdoor. Using semi-supervised machine learning techniques, our method automatically learns characteristics of new environments and devices, thereby achieves detection accuracy of over 90% even in unfamiliar circumstances. Therefore, it easily outperforms existing indoor-outdoor detection techniques based on static algorithms, or relying on energy hungry and unreliable GPS.\",\"PeriodicalId\":331897,\"journal\":{\"name\":\"Proceedings of the 20th annual international conference on Mobile computing and networking\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th annual international conference on Mobile computing and networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2639108.2642916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th annual international conference on Mobile computing and networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2639108.2642916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

移动设备的环境上下文决定了它的使用地点和方式,这可以用于有效的操作和更好的可用性。在这项工作中,我们描述了一种仅使用智能手机上的轻量级传感器来检测设备是室内还是室外的一般方法。使用半监督机器学习技术,我们的方法自动学习新环境和设备的特征,从而即使在不熟悉的环境中也能达到90%以上的检测准确率。因此,它很容易优于现有的基于静态算法的室内外检测技术,或者依赖于耗能大且不可靠的GPS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Poster: am i indoor or outdoor?
The environmental context of a mobile device determines where/how it is used, which can be exploited for efficient operation and better usability. In this work we describe a general method using only the lightweight sensors on a smartphone to detect if a device is indoor or outdoor. Using semi-supervised machine learning techniques, our method automatically learns characteristics of new environments and devices, thereby achieves detection accuracy of over 90% even in unfamiliar circumstances. Therefore, it easily outperforms existing indoor-outdoor detection techniques based on static algorithms, or relying on energy hungry and unreliable GPS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Demo: visual attention driven networking with smart glasses Poster - SEA-OR: spectrum and energy aware opportunistic routing for self-powered wireless sensor networks Poster: SaveAlert: an efficient and scalable sensor-driven danger detection system Demo: high-precision RFID tracking using COTS devies Demo: mobile opportunistic system for experience sharing (MOSES) in indoor exhibitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1