基于HOG-SVD特征的连通分量标记在多重复制-移动图像伪造检测中的应用

Anuja Dixit, Soumen Bag
{"title":"基于HOG-SVD特征的连通分量标记在多重复制-移动图像伪造检测中的应用","authors":"Anuja Dixit, Soumen Bag","doi":"10.1109/ISBA.2019.8778494","DOIUrl":null,"url":null,"abstract":"Copy-move forgery is one of the most regarded image forgery technique to tamper information conveyed by the image. In this technique, segment of original image is replicated and pasted across the same image to produce forged image. This technique is capable to hide selective information or to add fictitious details in image. Detection of this form of forgery is one of the significant area of information security. In this paper, we propose block-based approach for copy-move image forgery detection to secure information conveyed through the image by identifying the forged images and to prevent spreading of tampered subject matter. Proposed model divides suspicious image in overlapping blocks. We extracted block features using Histogram of Oriented Gradients (HOG) and Singular Value Decomposition (SVD). Lexicographical sorting is performed over feature matrix followed by Euclidean distance computation to recognize similar feature vectors. To remove false match detection, Connected component labeling is utilized. Our scheme achieves highest F-measure than former techniques, when forged image sustain plain multiple copy-move, multiple copy-move with contrast adjustment, color reduction, and image blurring attacks.","PeriodicalId":270033,"journal":{"name":"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Utilization of HOG-SVD based Features with Connected Component Labeling for Multiple Copy-move Image Forgery Detection\",\"authors\":\"Anuja Dixit, Soumen Bag\",\"doi\":\"10.1109/ISBA.2019.8778494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copy-move forgery is one of the most regarded image forgery technique to tamper information conveyed by the image. In this technique, segment of original image is replicated and pasted across the same image to produce forged image. This technique is capable to hide selective information or to add fictitious details in image. Detection of this form of forgery is one of the significant area of information security. In this paper, we propose block-based approach for copy-move image forgery detection to secure information conveyed through the image by identifying the forged images and to prevent spreading of tampered subject matter. Proposed model divides suspicious image in overlapping blocks. We extracted block features using Histogram of Oriented Gradients (HOG) and Singular Value Decomposition (SVD). Lexicographical sorting is performed over feature matrix followed by Euclidean distance computation to recognize similar feature vectors. To remove false match detection, Connected component labeling is utilized. Our scheme achieves highest F-measure than former techniques, when forged image sustain plain multiple copy-move, multiple copy-move with contrast adjustment, color reduction, and image blurring attacks.\",\"PeriodicalId\":270033,\"journal\":{\"name\":\"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBA.2019.8778494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBA.2019.8778494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

复制-移动伪造是目前最受重视的图像伪造技术之一,其目的是篡改图像所传递的信息。该技术将原始图像的片段复制并粘贴在同一图像上,从而产生伪造图像。该技术能够隐藏选择性信息或在图像中添加虚构的细节。这种伪造形式的检测是信息安全的重要领域之一。在本文中,我们提出了基于块的复制-移动图像伪造检测方法,通过识别伪造图像来保护图像中所传递的信息,并防止篡改主题的传播。该模型将可疑图像划分为重叠块。我们使用定向梯度直方图(HOG)和奇异值分解(SVD)来提取块特征。对特征矩阵进行字典排序,然后进行欧几里得距离计算以识别相似的特征向量。为了消除假匹配检测,使用了连通组件标记。当伪造图像承受普通的多次复制移动、带有对比度调整的多次复制移动、颜色减少和图像模糊攻击时,我们的方案比以前的技术实现了最高的f值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Utilization of HOG-SVD based Features with Connected Component Labeling for Multiple Copy-move Image Forgery Detection
Copy-move forgery is one of the most regarded image forgery technique to tamper information conveyed by the image. In this technique, segment of original image is replicated and pasted across the same image to produce forged image. This technique is capable to hide selective information or to add fictitious details in image. Detection of this form of forgery is one of the significant area of information security. In this paper, we propose block-based approach for copy-move image forgery detection to secure information conveyed through the image by identifying the forged images and to prevent spreading of tampered subject matter. Proposed model divides suspicious image in overlapping blocks. We extracted block features using Histogram of Oriented Gradients (HOG) and Singular Value Decomposition (SVD). Lexicographical sorting is performed over feature matrix followed by Euclidean distance computation to recognize similar feature vectors. To remove false match detection, Connected component labeling is utilized. Our scheme achieves highest F-measure than former techniques, when forged image sustain plain multiple copy-move, multiple copy-move with contrast adjustment, color reduction, and image blurring attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Super-Resolution and Image Re-projection for Iris Recognition User Behavior Profiling using Ensemble Approach for Insider Threat Detection Forensic Performance on Handwriting to Identify Forgery Owing to Word Alteration An Efficient Online Signature Verification Based on Feature Fusion and Interval Valued Representation of Writer Specific Features ISBA 2019 Sponsors Page
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1