基于形态计量结构的鞘翅目储粮害虫聚类分析

T. Azis, Shamshuritawati Sharif
{"title":"基于形态计量结构的鞘翅目储粮害虫聚类分析","authors":"T. Azis, Shamshuritawati Sharif","doi":"10.1063/1.5121110","DOIUrl":null,"url":null,"abstract":"The Coleopteran stored product pest contribute severe damage to stored product. Therefore, the identification of the insect pest is crucial step in the pest management program. However, the abundant of insect pest’s species may cause the difficulty in the identification process specially when using morphological image and molecular techniques. In this paper, the identification of the insect pest species is obtained using statistical analysis which are K-means clustering and Hierarchical Agglomerative Cluster Analysis (HACA). Based on the morphometric analysis of four morphological structure of 38 Coleopteran stored product pest species image, 100 dataset is generated. As a results, from two different clustering techniques, K-Means Clustering and Hierarchical Agglomerative Cluster Analysis (HACA) produce 5 clusters and 11 clusters, respectively. From the clustering evaluation, it is show that the HACA is the best since it produce the higher average Silhouette index.","PeriodicalId":325925,"journal":{"name":"THE 4TH INNOVATION AND ANALYTICS CONFERENCE & EXHIBITION (IACE 2019)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering analysis of Coleopteran stored product pest based on morphometric structure\",\"authors\":\"T. Azis, Shamshuritawati Sharif\",\"doi\":\"10.1063/1.5121110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Coleopteran stored product pest contribute severe damage to stored product. Therefore, the identification of the insect pest is crucial step in the pest management program. However, the abundant of insect pest’s species may cause the difficulty in the identification process specially when using morphological image and molecular techniques. In this paper, the identification of the insect pest species is obtained using statistical analysis which are K-means clustering and Hierarchical Agglomerative Cluster Analysis (HACA). Based on the morphometric analysis of four morphological structure of 38 Coleopteran stored product pest species image, 100 dataset is generated. As a results, from two different clustering techniques, K-Means Clustering and Hierarchical Agglomerative Cluster Analysis (HACA) produce 5 clusters and 11 clusters, respectively. From the clustering evaluation, it is show that the HACA is the best since it produce the higher average Silhouette index.\",\"PeriodicalId\":325925,\"journal\":{\"name\":\"THE 4TH INNOVATION AND ANALYTICS CONFERENCE & EXHIBITION (IACE 2019)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THE 4TH INNOVATION AND ANALYTICS CONFERENCE & EXHIBITION (IACE 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5121110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE 4TH INNOVATION AND ANALYTICS CONFERENCE & EXHIBITION (IACE 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5121110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

鞘翅目储粮害虫对储粮造成严重危害。因此,害虫的识别是病虫害防治的关键步骤。然而,由于害虫种类繁多,特别是在利用形态图像和分子技术进行鉴定时,可能会给鉴定过程带来困难。本文采用k -均值聚类和层次聚类分析(HACA)两种统计方法对害虫种类进行鉴定。通过对38种鞘翅目储粮害虫影像的4种形态结构进行形态计量学分析,生成了100个数据集。结果表明,K-Means聚类和HACA聚类分别产生5个聚类和11个聚类。聚类评价表明,HACA具有较高的平均廓形指数,是最优的聚类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clustering analysis of Coleopteran stored product pest based on morphometric structure
The Coleopteran stored product pest contribute severe damage to stored product. Therefore, the identification of the insect pest is crucial step in the pest management program. However, the abundant of insect pest’s species may cause the difficulty in the identification process specially when using morphological image and molecular techniques. In this paper, the identification of the insect pest species is obtained using statistical analysis which are K-means clustering and Hierarchical Agglomerative Cluster Analysis (HACA). Based on the morphometric analysis of four morphological structure of 38 Coleopteran stored product pest species image, 100 dataset is generated. As a results, from two different clustering techniques, K-Means Clustering and Hierarchical Agglomerative Cluster Analysis (HACA) produce 5 clusters and 11 clusters, respectively. From the clustering evaluation, it is show that the HACA is the best since it produce the higher average Silhouette index.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of artificial intelligence in predicting ground settlement on earth slope The most important contaminants of air pollutants in Klang station using multivariate statistical analysis Tourism knowledge discovery through data mining techniques On some specific patterns of τ-adic non-adjacent form expansion over ring Z(τ): An alternative formula Exploratory factor analysis on occupational stress in context of Malaysian sewerage operations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1