确定癫痫发作预测的适当窗口大小和窗口函数

Muharrem Çelebi, Kemal Güllü
{"title":"确定癫痫发作预测的适当窗口大小和窗口函数","authors":"Muharrem Çelebi, Kemal Güllü","doi":"10.1109/TIPTEKNO50054.2020.9299295","DOIUrl":null,"url":null,"abstract":"The aim of this study is to determine the appropriate window size and windowing function for studies related to epileptic seizure forecasting. Firstly, in order to accomplish this aim, a suitable data set is obtained. Afterwards, tests are performed for 12 different window durations and the most suitable windowing time is determined. Determined window duration, windowing functions of 5 different properties are applied and performance rates are examined. As a result of the findings obtained in future studies, it is aimed to increase the success rate by conducting test operations with different features and classifiers.","PeriodicalId":426945,"journal":{"name":"2020 Medical Technologies Congress (TIPTEKNO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Determining Appropriate Window Size and Window Function for Epileptic Seizure Forecasting\",\"authors\":\"Muharrem Çelebi, Kemal Güllü\",\"doi\":\"10.1109/TIPTEKNO50054.2020.9299295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is to determine the appropriate window size and windowing function for studies related to epileptic seizure forecasting. Firstly, in order to accomplish this aim, a suitable data set is obtained. Afterwards, tests are performed for 12 different window durations and the most suitable windowing time is determined. Determined window duration, windowing functions of 5 different properties are applied and performance rates are examined. As a result of the findings obtained in future studies, it is aimed to increase the success rate by conducting test operations with different features and classifiers.\",\"PeriodicalId\":426945,\"journal\":{\"name\":\"2020 Medical Technologies Congress (TIPTEKNO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Medical Technologies Congress (TIPTEKNO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIPTEKNO50054.2020.9299295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Medical Technologies Congress (TIPTEKNO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIPTEKNO50054.2020.9299295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是为癫痫发作预测研究确定合适的窗口大小和窗口函数。首先,为了实现这一目标,获得合适的数据集。然后,对12个不同的窗口持续时间执行测试,并确定最合适的窗口时间。确定了窗口持续时间,应用了5种不同属性的窗口函数,并检查了性能率。根据未来的研究结果,我们的目标是通过对不同的特征和分类器进行测试操作来提高成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determining Appropriate Window Size and Window Function for Epileptic Seizure Forecasting
The aim of this study is to determine the appropriate window size and windowing function for studies related to epileptic seizure forecasting. Firstly, in order to accomplish this aim, a suitable data set is obtained. Afterwards, tests are performed for 12 different window durations and the most suitable windowing time is determined. Determined window duration, windowing functions of 5 different properties are applied and performance rates are examined. As a result of the findings obtained in future studies, it is aimed to increase the success rate by conducting test operations with different features and classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiclass Classification of Brain Cancer with Machine Learning Algorithms Digital Filter Design Based on ARDUINO and Its Applications Use of Velocity Vectors for Cell Classification Under Acoustic Drifting Forces Development of a Full Face Mask during the COVID-19 Epidemic Spread Period TIPTEKNO 2020 Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1