{"title":"如何培育绿色决策树而不损失其准确性?","authors":"Tseng-Yi Chen, Yuan-Hao Chang, Ming-Chang Yang, Huang-wei Chen","doi":"10.1145/3370748.3406566","DOIUrl":null,"url":null,"abstract":"Decision tree is the core algorithm of the random forest learning that has been widely applied to classification and regression problems in the machine learning field. For avoiding underfitting, a decision tree algorithm will stop growing its tree model when the model is a fully-grown tree. However, a fully-grown tree will result in an overfitting problem reducing the accuracy of a decision tree. In such a dilemma, some post-pruning strategies have been proposed to reduce the model complexity of the fully-grown decision tree. Nevertheless, such a process is very energy-inefficiency over an non-volatile-memory-based (NVM-based) system because NVM generally have high writing costs (i.e., energy consumption and I/O latency). Such unnecessary data will induce high writing energy consumption and long I/O latency on NVM-based architectures, especially for low-power-oriented embedded systems. In order to establish a green decision tree (i.e., a tree model with minimized construction energy consumption), this study rethinks a pruning algorithm, namely duo-phase pruning framework, which can significantly decrease the energy consumption on the NVM-based computing system without loss of accuracy.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"How to cultivate a green decision tree without loss of accuracy?\",\"authors\":\"Tseng-Yi Chen, Yuan-Hao Chang, Ming-Chang Yang, Huang-wei Chen\",\"doi\":\"10.1145/3370748.3406566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decision tree is the core algorithm of the random forest learning that has been widely applied to classification and regression problems in the machine learning field. For avoiding underfitting, a decision tree algorithm will stop growing its tree model when the model is a fully-grown tree. However, a fully-grown tree will result in an overfitting problem reducing the accuracy of a decision tree. In such a dilemma, some post-pruning strategies have been proposed to reduce the model complexity of the fully-grown decision tree. Nevertheless, such a process is very energy-inefficiency over an non-volatile-memory-based (NVM-based) system because NVM generally have high writing costs (i.e., energy consumption and I/O latency). Such unnecessary data will induce high writing energy consumption and long I/O latency on NVM-based architectures, especially for low-power-oriented embedded systems. In order to establish a green decision tree (i.e., a tree model with minimized construction energy consumption), this study rethinks a pruning algorithm, namely duo-phase pruning framework, which can significantly decrease the energy consumption on the NVM-based computing system without loss of accuracy.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3370748.3406566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3370748.3406566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
How to cultivate a green decision tree without loss of accuracy?
Decision tree is the core algorithm of the random forest learning that has been widely applied to classification and regression problems in the machine learning field. For avoiding underfitting, a decision tree algorithm will stop growing its tree model when the model is a fully-grown tree. However, a fully-grown tree will result in an overfitting problem reducing the accuracy of a decision tree. In such a dilemma, some post-pruning strategies have been proposed to reduce the model complexity of the fully-grown decision tree. Nevertheless, such a process is very energy-inefficiency over an non-volatile-memory-based (NVM-based) system because NVM generally have high writing costs (i.e., energy consumption and I/O latency). Such unnecessary data will induce high writing energy consumption and long I/O latency on NVM-based architectures, especially for low-power-oriented embedded systems. In order to establish a green decision tree (i.e., a tree model with minimized construction energy consumption), this study rethinks a pruning algorithm, namely duo-phase pruning framework, which can significantly decrease the energy consumption on the NVM-based computing system without loss of accuracy.