机器人计划与人类意图匹配的一种度量方法——以多目标人-机器人路径规划为例*

M. T. Shaikh, M. Goodrich
{"title":"机器人计划与人类意图匹配的一种度量方法——以多目标人-机器人路径规划为例*","authors":"M. T. Shaikh, M. Goodrich","doi":"10.1109/RO-MAN47096.2020.9223330","DOIUrl":null,"url":null,"abstract":"Measuring how well a potential solution to a problem matches the problem-holder’s intent and detecting when a current solution no longer matches intent is important when designing resilient human-robot teams. This paper addresses intent-matching for a robot path-planning problem that includes multiple objectives and where human intent is represented as a vector in the multi-objective payoff space. The paper introduces a new metric called the intent threshold margin and shows that it can be used to rank paths by how close they match a specified intent. The rankings induced by the metric correlate with average human rankings (obtained in an MTurk study) of how closely different paths match a specified intent. The intuition of the intent threshold margin is that it represents how much the human’s intent must be \"relaxed\" to match the payoffs for a specified path.","PeriodicalId":383722,"journal":{"name":"2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Measure to Match Robot Plans to Human Intent: A Case Study in Multi-Objective Human-Robot Path-Planning*\",\"authors\":\"M. T. Shaikh, M. Goodrich\",\"doi\":\"10.1109/RO-MAN47096.2020.9223330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measuring how well a potential solution to a problem matches the problem-holder’s intent and detecting when a current solution no longer matches intent is important when designing resilient human-robot teams. This paper addresses intent-matching for a robot path-planning problem that includes multiple objectives and where human intent is represented as a vector in the multi-objective payoff space. The paper introduces a new metric called the intent threshold margin and shows that it can be used to rank paths by how close they match a specified intent. The rankings induced by the metric correlate with average human rankings (obtained in an MTurk study) of how closely different paths match a specified intent. The intuition of the intent threshold margin is that it represents how much the human’s intent must be \\\"relaxed\\\" to match the payoffs for a specified path.\",\"PeriodicalId\":383722,\"journal\":{\"name\":\"2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RO-MAN47096.2020.9223330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN47096.2020.9223330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在设计有弹性的人机团队时,衡量问题的潜在解决方案与问题持有人的意图相匹配的程度以及检测当前解决方案何时不再符合意图是很重要的。本文解决了一个包含多目标的机器人路径规划问题的意图匹配问题,其中人类意图在多目标支付空间中表示为向量。本文引入了一种称为意图阈值裕度的新度量,并表明它可以通过路径与指定意图的匹配程度来对路径进行排序。由度量诱发的排名与人类平均排名(在MTurk的研究中获得)相关,即不同路径与特定意图的匹配程度。直觉的意图阈值边界是,它代表了人类的意图必须“放松”多少,以匹配特定路径的回报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Measure to Match Robot Plans to Human Intent: A Case Study in Multi-Objective Human-Robot Path-Planning*
Measuring how well a potential solution to a problem matches the problem-holder’s intent and detecting when a current solution no longer matches intent is important when designing resilient human-robot teams. This paper addresses intent-matching for a robot path-planning problem that includes multiple objectives and where human intent is represented as a vector in the multi-objective payoff space. The paper introduces a new metric called the intent threshold margin and shows that it can be used to rank paths by how close they match a specified intent. The rankings induced by the metric correlate with average human rankings (obtained in an MTurk study) of how closely different paths match a specified intent. The intuition of the intent threshold margin is that it represents how much the human’s intent must be "relaxed" to match the payoffs for a specified path.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Adaptive Control Approach to Robotic Assembly with Uncertainties in Vision and Dynamics Affective Touch Robots with Changing Textures and Movements Interactive Robotic Systems as Boundary-Crossing Robots – the User’s View* Development of a Learning-Based Intention Detection Framework for Power-Assisted Manual Wheelchair Users Multi-user Robot Impression with a Virtual Agent and Features Modification According to Real-time Emotion from Physiological Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1