dirichlet -生存过程:主题相关扩散网络的可扩展推理

Gael Poux-Medard, Julien Velcin, Sabine Loudcher
{"title":"dirichlet -生存过程:主题相关扩散网络的可扩展推理","authors":"Gael Poux-Medard, Julien Velcin, Sabine Loudcher","doi":"10.48550/arXiv.2212.05996","DOIUrl":null,"url":null,"abstract":"Information spread on networks can be efficiently modeled by considering three features: documents' content, time of publication relative to other publications, and position of the spreader in the network. Most previous works model up to two of those jointly, or rely on heavily parametric approaches. Building on recent Dirichlet-Point processes literature, we introduce the Houston (Hidden Online User-Topic Network) model, that jointly considers all those features in a non-parametric unsupervised framework. It infers dynamic topic-dependent underlying diffusion networks in a continuous-time setting along with said topics. It is unsupervised; it considers an unlabeled stream of triplets shaped as \\textit{(time of publication, information's content, spreading entity)} as input data. Online inference is conducted using a sequential Monte-Carlo algorithm that scales linearly with the size of the dataset. Our approach yields consequent improvements over existing baselines on both cluster recovery and subnetworks inference tasks.","PeriodicalId":126309,"journal":{"name":"European Conference on Information Retrieval","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dirichlet-Survival Process: Scalable Inference of Topic-Dependent Diffusion Networks\",\"authors\":\"Gael Poux-Medard, Julien Velcin, Sabine Loudcher\",\"doi\":\"10.48550/arXiv.2212.05996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information spread on networks can be efficiently modeled by considering three features: documents' content, time of publication relative to other publications, and position of the spreader in the network. Most previous works model up to two of those jointly, or rely on heavily parametric approaches. Building on recent Dirichlet-Point processes literature, we introduce the Houston (Hidden Online User-Topic Network) model, that jointly considers all those features in a non-parametric unsupervised framework. It infers dynamic topic-dependent underlying diffusion networks in a continuous-time setting along with said topics. It is unsupervised; it considers an unlabeled stream of triplets shaped as \\\\textit{(time of publication, information's content, spreading entity)} as input data. Online inference is conducted using a sequential Monte-Carlo algorithm that scales linearly with the size of the dataset. Our approach yields consequent improvements over existing baselines on both cluster recovery and subnetworks inference tasks.\",\"PeriodicalId\":126309,\"journal\":{\"name\":\"European Conference on Information Retrieval\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Conference on Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2212.05996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.05996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过考虑文件的内容、相对于其他出版物的发布时间以及传播者在网络中的位置这三个特征,可以有效地对网络上的信息传播进行建模。大多数先前的工作都是联合建模其中的两个,或者依赖于高度参数化的方法。在最近的Dirichlet-Point过程文献的基础上,我们引入了休斯顿(隐藏在线用户主题网络)模型,该模型在非参数无监督框架中共同考虑了所有这些特征。它与所述主题一起在连续时间设置中推断动态主题相关的潜在扩散网络。它是无人监督的;它考虑一个未标记的三元流,形状为\textit{(发布时间、信息内容、传播实体)}作为输入数据。在线推理使用顺序蒙特卡罗算法进行,该算法与数据集的大小线性扩展。我们的方法在集群恢复和子网推理任务上都优于现有的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dirichlet-Survival Process: Scalable Inference of Topic-Dependent Diffusion Networks
Information spread on networks can be efficiently modeled by considering three features: documents' content, time of publication relative to other publications, and position of the spreader in the network. Most previous works model up to two of those jointly, or rely on heavily parametric approaches. Building on recent Dirichlet-Point processes literature, we introduce the Houston (Hidden Online User-Topic Network) model, that jointly considers all those features in a non-parametric unsupervised framework. It infers dynamic topic-dependent underlying diffusion networks in a continuous-time setting along with said topics. It is unsupervised; it considers an unlabeled stream of triplets shaped as \textit{(time of publication, information's content, spreading entity)} as input data. Online inference is conducted using a sequential Monte-Carlo algorithm that scales linearly with the size of the dataset. Our approach yields consequent improvements over existing baselines on both cluster recovery and subnetworks inference tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experiments in News Bias Detection with Pre-trained Neural Transformers Is Interpretable Machine Learning Effective at Feature Selection for Neural Learning-to-Rank? Two-Step SPLADE: Simple, Efficient and Effective Approximation of SPLADE Exploring the Nexus Between Retrievability and Query Generation Strategies Countering Mainstream Bias via End-to-End Adaptive Local Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1