大型视频标引的比较研究

Ziyue Luo, Xiaoging Yu, Linxia Zhong
{"title":"大型视频标引的比较研究","authors":"Ziyue Luo, Xiaoging Yu, Linxia Zhong","doi":"10.1049/CP.2017.0114","DOIUrl":null,"url":null,"abstract":"Video plays an important role in our daily life. But in most video websites such as YouTube, it is always a problem to classify millions of videos that are updated every day. So there is an urgent need to develop a classification algorithm to accurately assign labels to those videos. In this paper, we use Google Cloud Platform as our calculating environment and choose the new and improved YT-8M V2 as dataset. Based on these, we compare the estimation of distribution algorithm and the recurrent neural network algorithm, trace their accuracy, and finally find the more suitable one for this problem.","PeriodicalId":424212,"journal":{"name":"4th International Conference on Smart and Sustainable City (ICSSC 2017)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study on large-size video indexing\",\"authors\":\"Ziyue Luo, Xiaoging Yu, Linxia Zhong\",\"doi\":\"10.1049/CP.2017.0114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video plays an important role in our daily life. But in most video websites such as YouTube, it is always a problem to classify millions of videos that are updated every day. So there is an urgent need to develop a classification algorithm to accurately assign labels to those videos. In this paper, we use Google Cloud Platform as our calculating environment and choose the new and improved YT-8M V2 as dataset. Based on these, we compare the estimation of distribution algorithm and the recurrent neural network algorithm, trace their accuracy, and finally find the more suitable one for this problem.\",\"PeriodicalId\":424212,\"journal\":{\"name\":\"4th International Conference on Smart and Sustainable City (ICSSC 2017)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th International Conference on Smart and Sustainable City (ICSSC 2017)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/CP.2017.0114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Conference on Smart and Sustainable City (ICSSC 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/CP.2017.0114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视频在我们的日常生活中扮演着重要的角色。但是在像YouTube这样的大多数视频网站上,对每天更新的数百万个视频进行分类总是一个问题。因此,迫切需要开发一种分类算法来准确地为这些视频分配标签。本文采用谷歌云平台作为计算环境,选用新的改进的YT-8M V2作为数据集。在此基础上,对分布估计算法和递归神经网络估计算法进行了比较,并对其精度进行了跟踪,最终找到了更适合该问题的估计算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparative study on large-size video indexing
Video plays an important role in our daily life. But in most video websites such as YouTube, it is always a problem to classify millions of videos that are updated every day. So there is an urgent need to develop a classification algorithm to accurately assign labels to those videos. In this paper, we use Google Cloud Platform as our calculating environment and choose the new and improved YT-8M V2 as dataset. Based on these, we compare the estimation of distribution algorithm and the recurrent neural network algorithm, trace their accuracy, and finally find the more suitable one for this problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPS data cleaning and analysis based on YouSense mobile application A new approach for tracking human body movements by kinect sensor Crowd counting and density estimation via two-column convolutional neural network Human pose estimation via improved ResNet50 IOT based smart restaurant system using RFID
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1