{"title":"基于软计算的智能入侵检测","authors":"C. Yan","doi":"10.1109/ICMTMA.2015.145","DOIUrl":null,"url":null,"abstract":"Aiming at false negative rate and false alart rate which exist generally in the intrusion detection system, a intelligent intrusion detection model is proposed in this paper. Based on the characteristics of global superiority of genetic algorithm and locality of nerve, the model optimizes the weights of the neural network using genetic algorithm. Experiment results show that the intelligent way can improve the efficiency of the intrusion detection.","PeriodicalId":196962,"journal":{"name":"2015 Seventh International Conference on Measuring Technology and Mechatronics Automation","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Intelligent Intrusion Detection Based on Soft Computing\",\"authors\":\"C. Yan\",\"doi\":\"10.1109/ICMTMA.2015.145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at false negative rate and false alart rate which exist generally in the intrusion detection system, a intelligent intrusion detection model is proposed in this paper. Based on the characteristics of global superiority of genetic algorithm and locality of nerve, the model optimizes the weights of the neural network using genetic algorithm. Experiment results show that the intelligent way can improve the efficiency of the intrusion detection.\",\"PeriodicalId\":196962,\"journal\":{\"name\":\"2015 Seventh International Conference on Measuring Technology and Mechatronics Automation\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Seventh International Conference on Measuring Technology and Mechatronics Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMTMA.2015.145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Seventh International Conference on Measuring Technology and Mechatronics Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMTMA.2015.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

针对入侵检测系统中普遍存在的误报率和误报率问题,提出了一种智能入侵检测模型。该模型利用遗传算法的全局优越性和神经的局部性特点,利用遗传算法对神经网络的权值进行优化。实验结果表明,该方法可以提高入侵检测的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent Intrusion Detection Based on Soft Computing
Aiming at false negative rate and false alart rate which exist generally in the intrusion detection system, a intelligent intrusion detection model is proposed in this paper. Based on the characteristics of global superiority of genetic algorithm and locality of nerve, the model optimizes the weights of the neural network using genetic algorithm. Experiment results show that the intelligent way can improve the efficiency of the intrusion detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Based on Data Analysis about Risks of Bidding Decisions in Engineering Projects Study on Trusted Vitual Machine Platform Based on Cipher Card Meso-Structure Quantitative Research about Coals Based on the Digital Image Processing Technology News of Atomic Events Time Sequence Relationship Recognition Based on Function Word and Predicate Co-occurrence Research on Bridge Subsidence Control Based on Slip Casting Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1