微纳米二氧化硅填料硅橡胶复合材料抗交流电晕性能研究

M. Nazir, B. T. Phung
{"title":"微纳米二氧化硅填料硅橡胶复合材料抗交流电晕性能研究","authors":"M. Nazir, B. T. Phung","doi":"10.1109/ICD.2016.7547707","DOIUrl":null,"url":null,"abstract":"Silicone rubber (SR) insulating surfaces are often subjected to corona partial discharges (PD) during outdoor operation which can change the surface chemistry significantly and result in considerable surface deterioration, hydrophobicity loss, and enhancement of PD activity. In this work, the effect of micro and nano-fillers addition on surface degradation of SR under AC corona discharge is examined by analyzing the PD characteristics, hydrophobicity and surface morphology. Nano precipitated silica and ground silica with particle size of ~20 nm and ~5 μm are adopted and incorporated in RTV silicone rubber by two different mixing techniques. Mechanical stirring followed by ultrasonic water bath are applied to achieve uniform dispersion of fillers in RTV SR matrix. The four different types of the composite, i.e. pristine SR, 30-wt% micro-silica/SR, 27.5-wt% micro with 2.5-wt% nano-silica/SR and 5-wt% nanosilica/SR composites are tested under AC corona discharge. It is found that, at the end of ageing, the nano-silica composite showed the best suppression against PD activity and higher resistance against surface damage as compared to other test samples. It is also found that resistance to hydrophobicity loss is offered by composites during the initial 48 h of corona treatment but it is completely lost at the end of 96 h of ageing.","PeriodicalId":306397,"journal":{"name":"2016 IEEE International Conference on Dielectrics (ICD)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"AC corona resistance performance of silicone rubber composites with micro/nano silica fillers\",\"authors\":\"M. Nazir, B. T. Phung\",\"doi\":\"10.1109/ICD.2016.7547707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicone rubber (SR) insulating surfaces are often subjected to corona partial discharges (PD) during outdoor operation which can change the surface chemistry significantly and result in considerable surface deterioration, hydrophobicity loss, and enhancement of PD activity. In this work, the effect of micro and nano-fillers addition on surface degradation of SR under AC corona discharge is examined by analyzing the PD characteristics, hydrophobicity and surface morphology. Nano precipitated silica and ground silica with particle size of ~20 nm and ~5 μm are adopted and incorporated in RTV silicone rubber by two different mixing techniques. Mechanical stirring followed by ultrasonic water bath are applied to achieve uniform dispersion of fillers in RTV SR matrix. The four different types of the composite, i.e. pristine SR, 30-wt% micro-silica/SR, 27.5-wt% micro with 2.5-wt% nano-silica/SR and 5-wt% nanosilica/SR composites are tested under AC corona discharge. It is found that, at the end of ageing, the nano-silica composite showed the best suppression against PD activity and higher resistance against surface damage as compared to other test samples. It is also found that resistance to hydrophobicity loss is offered by composites during the initial 48 h of corona treatment but it is completely lost at the end of 96 h of ageing.\",\"PeriodicalId\":306397,\"journal\":{\"name\":\"2016 IEEE International Conference on Dielectrics (ICD)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Dielectrics (ICD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICD.2016.7547707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Dielectrics (ICD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICD.2016.7547707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

硅橡胶(SR)绝缘表面在室外操作时经常受到电晕局部放电(PD)的影响,这会显著改变表面化学性质,导致相当大的表面劣化、疏水性损失和PD活性增强。本文通过分析钯的特性、疏水性和表面形貌,研究了微纳米填料对交流电晕放电下锶表面降解的影响。采用粒径为~20 nm和~5 μm的纳米沉淀二氧化硅和磨粒二氧化硅,通过两种不同的混炼工艺掺入到RTV硅橡胶中。采用机械搅拌和超声水浴相结合的方法,实现了填料在RTV SR基体中的均匀分散。在交流电晕放电下测试了四种不同类型的复合材料,即原始SR, 30 wt%微二氧化硅/SR, 27.5 wt%微含2.5 wt%纳米二氧化硅/SR和5 wt%纳米二氧化硅/SR复合材料。结果表明,在时效结束时,纳米二氧化硅复合材料对PD活性的抑制效果最好,对表面损伤的抵抗能力也比其他测试样品高。还发现,复合材料在电晕处理的最初48小时内具有抗疏水性损失的能力,但在老化96小时结束时完全丧失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AC corona resistance performance of silicone rubber composites with micro/nano silica fillers
Silicone rubber (SR) insulating surfaces are often subjected to corona partial discharges (PD) during outdoor operation which can change the surface chemistry significantly and result in considerable surface deterioration, hydrophobicity loss, and enhancement of PD activity. In this work, the effect of micro and nano-fillers addition on surface degradation of SR under AC corona discharge is examined by analyzing the PD characteristics, hydrophobicity and surface morphology. Nano precipitated silica and ground silica with particle size of ~20 nm and ~5 μm are adopted and incorporated in RTV silicone rubber by two different mixing techniques. Mechanical stirring followed by ultrasonic water bath are applied to achieve uniform dispersion of fillers in RTV SR matrix. The four different types of the composite, i.e. pristine SR, 30-wt% micro-silica/SR, 27.5-wt% micro with 2.5-wt% nano-silica/SR and 5-wt% nanosilica/SR composites are tested under AC corona discharge. It is found that, at the end of ageing, the nano-silica composite showed the best suppression against PD activity and higher resistance against surface damage as compared to other test samples. It is also found that resistance to hydrophobicity loss is offered by composites during the initial 48 h of corona treatment but it is completely lost at the end of 96 h of ageing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characteristics of g3 - an alternative to SF6 Self-healing electrical insulation systems Aging behaviour of dodecylbenzene in the presence of copper and dibenzyl disulfide (DBDS) Electrical treeing behavior in XLPE under kHz-AC voltage Single partial discharge in nonuniform electric field for different polymer dielectrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1