基于多元高斯copula的分布估计算法

Ying Gao, Xiao Hu, Huiliang Liu
{"title":"基于多元高斯copula的分布估计算法","authors":"Ying Gao, Xiao Hu, Huiliang Liu","doi":"10.1109/PIC.2010.5687453","DOIUrl":null,"url":null,"abstract":"Copula is a powerful tool for multivariate probability analysis. Estimation of distribution algorithms are a class of optimization algorithms based on probability distribution model. This paper introduces a new estimation of distribution algorithm with multivariate Gaussian copulas. In the algorithm, Gaussian copula parameters are firstly estimated by estimating Kendall's tau and using the relationship of Kendall's tau and correlation matrix, thus, joint distribution is estimated. Then, the Monte Carte simulation is used to generate new individuals. The relative experimental results show that the new algorithm is effective.","PeriodicalId":142910,"journal":{"name":"2010 IEEE International Conference on Progress in Informatics and Computing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Estimation of distribution algorithm based on multivariate Gaussian copulas\",\"authors\":\"Ying Gao, Xiao Hu, Huiliang Liu\",\"doi\":\"10.1109/PIC.2010.5687453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copula is a powerful tool for multivariate probability analysis. Estimation of distribution algorithms are a class of optimization algorithms based on probability distribution model. This paper introduces a new estimation of distribution algorithm with multivariate Gaussian copulas. In the algorithm, Gaussian copula parameters are firstly estimated by estimating Kendall's tau and using the relationship of Kendall's tau and correlation matrix, thus, joint distribution is estimated. Then, the Monte Carte simulation is used to generate new individuals. The relative experimental results show that the new algorithm is effective.\",\"PeriodicalId\":142910,\"journal\":{\"name\":\"2010 IEEE International Conference on Progress in Informatics and Computing\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Progress in Informatics and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIC.2010.5687453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Progress in Informatics and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2010.5687453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

Copula是一个强大的多变量概率分析工具。分布估计算法是一类基于概率分布模型的优化算法。介绍了一种新的多元高斯copula分布估计算法。该算法首先通过估计Kendall's tau,利用Kendall's tau与相关矩阵的关系估计高斯copula参数,从而估计联合分布。然后,使用蒙特卡特模拟生成新的个体。相关实验结果表明,新算法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of distribution algorithm based on multivariate Gaussian copulas
Copula is a powerful tool for multivariate probability analysis. Estimation of distribution algorithms are a class of optimization algorithms based on probability distribution model. This paper introduces a new estimation of distribution algorithm with multivariate Gaussian copulas. In the algorithm, Gaussian copula parameters are firstly estimated by estimating Kendall's tau and using the relationship of Kendall's tau and correlation matrix, thus, joint distribution is estimated. Then, the Monte Carte simulation is used to generate new individuals. The relative experimental results show that the new algorithm is effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data compression of multispectral images for FY-2C geostationary meteorological satellite Redundant De Bruijn graph based location and routing for large-scale peer-to-peer system Content semantic filter based on Domain Ontology An isolated word recognition system based on DSP and improved dynamic time warping algorithm Research on Logistics Carbon Footprint Analysis System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1