基于机器学习的图像伪造分类与定位显著性算法

A. Thakur, N. Jindal
{"title":"基于机器学习的图像伪造分类与定位显著性算法","authors":"A. Thakur, N. Jindal","doi":"10.1109/ICSCCC.2018.8703287","DOIUrl":null,"url":null,"abstract":"In this paper, two algorithms are proposed to classify and localize image forgery. In the first algorithm, deep learning based convolution neural network is used to classify spliced and authentic images. In the second algorithm, machine learning based saliency algorithm is used to detect and localize forged images. Input images are preprocessed using color illumination maps with equal size and channels. Saliency algorithm detect unique features such as color illumination, pixel resolution etc. of the image. These unique features depict the forged regions in an image. The results are obtained on CASIA-v1, CASIA-v2, DVMM and BSDS-300 dataset. Simulated results in both algorithm are better as compare to the state of the art method.","PeriodicalId":148491,"journal":{"name":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Machine Learning Based Saliency Algorithm For Image Forgery Classification And Localization\",\"authors\":\"A. Thakur, N. Jindal\",\"doi\":\"10.1109/ICSCCC.2018.8703287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, two algorithms are proposed to classify and localize image forgery. In the first algorithm, deep learning based convolution neural network is used to classify spliced and authentic images. In the second algorithm, machine learning based saliency algorithm is used to detect and localize forged images. Input images are preprocessed using color illumination maps with equal size and channels. Saliency algorithm detect unique features such as color illumination, pixel resolution etc. of the image. These unique features depict the forged regions in an image. The results are obtained on CASIA-v1, CASIA-v2, DVMM and BSDS-300 dataset. Simulated results in both algorithm are better as compare to the state of the art method.\",\"PeriodicalId\":148491,\"journal\":{\"name\":\"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCCC.2018.8703287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCCC.2018.8703287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了两种图像伪造分类和定位算法。在第一种算法中,使用基于深度学习的卷积神经网络对拼接图像和真实图像进行分类。第二种算法采用基于机器学习的显著性算法对伪造图像进行检测和定位。输入图像使用相同大小和通道的彩色照明图进行预处理。显著性算法检测图像的独特特征,如颜色照明,像素分辨率等。这些独特的特征描绘了图像中的伪造区域。结果在CASIA-v1、CASIA-v2、DVMM和BSDS-300数据集上得到。两种算法的仿真结果都优于目前的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Based Saliency Algorithm For Image Forgery Classification And Localization
In this paper, two algorithms are proposed to classify and localize image forgery. In the first algorithm, deep learning based convolution neural network is used to classify spliced and authentic images. In the second algorithm, machine learning based saliency algorithm is used to detect and localize forged images. Input images are preprocessed using color illumination maps with equal size and channels. Saliency algorithm detect unique features such as color illumination, pixel resolution etc. of the image. These unique features depict the forged regions in an image. The results are obtained on CASIA-v1, CASIA-v2, DVMM and BSDS-300 dataset. Simulated results in both algorithm are better as compare to the state of the art method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
To Alleviate The Flooding Attack and Intensify Efficiency in MANET Deep Leaming Approaches for Brain Tumor Segmentation: A Review Q-AODV: A Flood control Ad-Hoc on Demand Distance Vector Routing Protocol Sentimental Analysis On Social Feeds to Predict the Elections A Comparative study of various Video Tampering detection methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1