用于机器学习训练数据集的多个注释器的个体变化的可视化

T. Itoh, Ayana Murakami
{"title":"用于机器学习训练数据集的多个注释器的个体变化的可视化","authors":"T. Itoh, Ayana Murakami","doi":"10.1109/NicoInt50878.2020.00022","DOIUrl":null,"url":null,"abstract":"Quality of training datasets is essential for the quality of machine learning. Machine learning projects often invite multiple workers for these annotation tasks for training dataset creation. It is important to observe on what types of contents multiple workers make different annotations, or which workers often make abnormal annotations, to guarantee the quality of training datasets. This paper presents a tool for the visualization of abnormality of annotations by multiple workers. The tool generates a matrix of abnormality of annotations for each of the images by each of the workers and displays as a heatmap. This paper introduces an example using a training dataset where estimated ages are annotated to 7,748 pictures of human faces by eight workers.","PeriodicalId":230190,"journal":{"name":"2020 Nicograph International (NicoInt)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Visualization of Individual Variation of Multiple Annotators Working on Training Datasets for Machine Learning\",\"authors\":\"T. Itoh, Ayana Murakami\",\"doi\":\"10.1109/NicoInt50878.2020.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quality of training datasets is essential for the quality of machine learning. Machine learning projects often invite multiple workers for these annotation tasks for training dataset creation. It is important to observe on what types of contents multiple workers make different annotations, or which workers often make abnormal annotations, to guarantee the quality of training datasets. This paper presents a tool for the visualization of abnormality of annotations by multiple workers. The tool generates a matrix of abnormality of annotations for each of the images by each of the workers and displays as a heatmap. This paper introduces an example using a training dataset where estimated ages are annotated to 7,748 pictures of human faces by eight workers.\",\"PeriodicalId\":230190,\"journal\":{\"name\":\"2020 Nicograph International (NicoInt)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Nicograph International (NicoInt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NicoInt50878.2020.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Nicograph International (NicoInt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NicoInt50878.2020.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

训练数据集的质量对机器学习的质量至关重要。机器学习项目通常会邀请多个工作人员来完成这些注释任务,以创建训练数据集。为了保证训练数据集的质量,观察在哪些类型的内容上多个工作人员做了不同的注释,或者哪些工作人员经常做异常的注释是很重要的。本文提出了一种多工作者标注异常的可视化工具。该工具为每个工作人员的每个图像生成异常注释矩阵,并显示为热图。本文介绍了一个使用训练数据集的示例,其中8名工作人员对7,748张人脸图片进行了估计年龄的注释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visualization of Individual Variation of Multiple Annotators Working on Training Datasets for Machine Learning
Quality of training datasets is essential for the quality of machine learning. Machine learning projects often invite multiple workers for these annotation tasks for training dataset creation. It is important to observe on what types of contents multiple workers make different annotations, or which workers often make abnormal annotations, to guarantee the quality of training datasets. This paper presents a tool for the visualization of abnormality of annotations by multiple workers. The tool generates a matrix of abnormality of annotations for each of the images by each of the workers and displays as a heatmap. This paper introduces an example using a training dataset where estimated ages are annotated to 7,748 pictures of human faces by eight workers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Manifold Learning for Hand Drawn Sketches NicoInt 2020 Opinion A Cloud Experiment for Virtual Reality and Augmented Reality in NCHC Render Farm Image Based 3D Posture Matching in Real Time for Stone Tool Assembly NicoInt 2020 Commentary
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1