用于分散数据中心的光连接存储器

Jorge González, A. Gazman, Maarten Hattink, Mauricio G. Palma, M. Bahadori, Ruth E. Rubio-Noriega, Lois Orosa, M. Glick, O. Mutlu, K. Bergman, R. Azevedo
{"title":"用于分散数据中心的光连接存储器","authors":"Jorge González, A. Gazman, Maarten Hattink, Mauricio G. Palma, M. Bahadori, Ruth E. Rubio-Noriega, Lois Orosa, M. Glick, O. Mutlu, K. Bergman, R. Azevedo","doi":"10.1109/SBAC-PAD49847.2020.00017","DOIUrl":null,"url":null,"abstract":"Recent advances in integrated photonics enable the implementation of reconfigurable, high-bandwidth, and low energy-per-bit interconnects in next-generation data centers. We propose and evaluate an Optically Connected Memory (OCM) architecture that disaggregates the main memory from the computation nodes in data centers. OCM is based on micro-ring resonators (MRRs), and it does not require any modification to the DRAM memory modules. We calculate energy consumption from real photonic devices and integrate them into a system simulator to evaluate performance. Our results show that (1) OCM is capable of interconnecting four DDR4 memory channels to a computing node using two fibers with 1.07 pJ energy-per-bit consumption and (2) OCM performs up to 5.5x faster than a disaggregated memory with 40G PCIe NIC connectors to computing nodes.","PeriodicalId":202581,"journal":{"name":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Optically Connected Memory for Disaggregated Data Centers\",\"authors\":\"Jorge González, A. Gazman, Maarten Hattink, Mauricio G. Palma, M. Bahadori, Ruth E. Rubio-Noriega, Lois Orosa, M. Glick, O. Mutlu, K. Bergman, R. Azevedo\",\"doi\":\"10.1109/SBAC-PAD49847.2020.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in integrated photonics enable the implementation of reconfigurable, high-bandwidth, and low energy-per-bit interconnects in next-generation data centers. We propose and evaluate an Optically Connected Memory (OCM) architecture that disaggregates the main memory from the computation nodes in data centers. OCM is based on micro-ring resonators (MRRs), and it does not require any modification to the DRAM memory modules. We calculate energy consumption from real photonic devices and integrate them into a system simulator to evaluate performance. Our results show that (1) OCM is capable of interconnecting four DDR4 memory channels to a computing node using two fibers with 1.07 pJ energy-per-bit consumption and (2) OCM performs up to 5.5x faster than a disaggregated memory with 40G PCIe NIC connectors to computing nodes.\",\"PeriodicalId\":202581,\"journal\":{\"name\":\"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBAC-PAD49847.2020.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD49847.2020.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

集成光子学的最新进展使得在下一代数据中心中实现可重构、高带宽和低能耗比特互连成为可能。我们提出并评估了一种光连接内存(OCM)架构,该架构将数据中心的主内存与计算节点分离开来。OCM 基于微环谐振器 (MRR),无需对 DRAM 内存模块进行任何修改。我们计算了实际光子设备的能耗,并将其集成到系统模拟器中以评估性能。我们的结果表明:(1) OCM 能够使用两根光纤将四个 DDR4 内存通道互连到计算节点,每比特能耗为 1.07 pJ;(2) OCM 的性能比使用 40G PCIe NIC 连接器的分解内存快 5.5 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optically Connected Memory for Disaggregated Data Centers
Recent advances in integrated photonics enable the implementation of reconfigurable, high-bandwidth, and low energy-per-bit interconnects in next-generation data centers. We propose and evaluate an Optically Connected Memory (OCM) architecture that disaggregates the main memory from the computation nodes in data centers. OCM is based on micro-ring resonators (MRRs), and it does not require any modification to the DRAM memory modules. We calculate energy consumption from real photonic devices and integrate them into a system simulator to evaluate performance. Our results show that (1) OCM is capable of interconnecting four DDR4 memory channels to a computing node using two fibers with 1.07 pJ energy-per-bit consumption and (2) OCM performs up to 5.5x faster than a disaggregated memory with 40G PCIe NIC connectors to computing nodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analyzing the Loop Scheduling Mechanisms on Julia Multithreading Reliable and Energy-aware Mapping of Streaming Series-parallel Applications onto Hierarchical Platforms High-Performance Low-Memory Lowering: GEMM-based Algorithms for DNN Convolution Energy-Efficient Time Series Analysis Using Transprecision Computing On-chip Parallel Photonic Reservoir Computing using Multiple Delay Lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1