智能交通应用导航系统的弹性特性

H. Wassaf, J. Rife, K. V. Dyke
{"title":"智能交通应用导航系统的弹性特性","authors":"H. Wassaf, J. Rife, K. V. Dyke","doi":"10.1109/PLANS53410.2023.10139994","DOIUrl":null,"url":null,"abstract":"Automated Driving Systems (ADS) are expected to be an integral component of a future safe and efficient intelligent transportation system. ADSs assume strategic and tactical maneuvering decisions, and associated vehicle control functions traditionally performed by human drivers. Navigation systems supporting this high level of automation are safety critical and must meet requirements imposed by the use-case nominal operation conditions. These systems must also be resilient to certain intentional and unintentional threats encountered during operation. While there have been past and ongoing efforts to determine PNT safety performance needs, an approach to quantify navigation system resiliency to intentional threats is still lacking. In this paper we develop such approach and introduce two resiliency metrics to quantitatively assess automated vehicle performance, with a primary focus on ADS with SAE Automation Level 4 (L4). Our resiliency metrics build on formal definitions of integrity, accuracy, availability, and continuity, adapting concepts used in commercial aviation to also apply to road applications. In our analysis, the key is to distinguish faults (for which a prior probability can be defined) from threats (for which a prior cannot be defined). A simulation of an ADS L4 multilane highway application with vehicle-to-vehicle and vehicle-to-infrastructure communication quantitatively demonstrates how our proposed approach allows for safe operation during a time-limited transition immediately after the introduction of a threat and also for persistent threats (via reduced capacity mitigation). This simulation will also illustrate how, for a particular navigation system, the two complementary resiliency metrics can be used to quantify the increased risk during the time-limited transition as well as the capacity degradation level for safe steady state safe operations.","PeriodicalId":344794,"journal":{"name":"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resiliency Characterization of Navigation Systems for Intelligent Transportation Applications\",\"authors\":\"H. Wassaf, J. Rife, K. V. Dyke\",\"doi\":\"10.1109/PLANS53410.2023.10139994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated Driving Systems (ADS) are expected to be an integral component of a future safe and efficient intelligent transportation system. ADSs assume strategic and tactical maneuvering decisions, and associated vehicle control functions traditionally performed by human drivers. Navigation systems supporting this high level of automation are safety critical and must meet requirements imposed by the use-case nominal operation conditions. These systems must also be resilient to certain intentional and unintentional threats encountered during operation. While there have been past and ongoing efforts to determine PNT safety performance needs, an approach to quantify navigation system resiliency to intentional threats is still lacking. In this paper we develop such approach and introduce two resiliency metrics to quantitatively assess automated vehicle performance, with a primary focus on ADS with SAE Automation Level 4 (L4). Our resiliency metrics build on formal definitions of integrity, accuracy, availability, and continuity, adapting concepts used in commercial aviation to also apply to road applications. In our analysis, the key is to distinguish faults (for which a prior probability can be defined) from threats (for which a prior cannot be defined). A simulation of an ADS L4 multilane highway application with vehicle-to-vehicle and vehicle-to-infrastructure communication quantitatively demonstrates how our proposed approach allows for safe operation during a time-limited transition immediately after the introduction of a threat and also for persistent threats (via reduced capacity mitigation). This simulation will also illustrate how, for a particular navigation system, the two complementary resiliency metrics can be used to quantify the increased risk during the time-limited transition as well as the capacity degradation level for safe steady state safe operations.\",\"PeriodicalId\":344794,\"journal\":{\"name\":\"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS53410.2023.10139994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS53410.2023.10139994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动驾驶系统(ADS)有望成为未来安全高效的智能交通系统的重要组成部分。ads承担战略和战术机动决策,以及传统上由人类驾驶员执行的相关车辆控制功能。支持这种高水平自动化的导航系统对安全至关重要,并且必须满足用例标准操作条件所施加的要求。这些系统还必须能够抵御在操作过程中遇到的某些有意或无意的威胁。虽然过去和现在一直在努力确定PNT的安全性能需求,但量化导航系统对故意威胁的弹性的方法仍然缺乏。在本文中,我们开发了这种方法,并引入了两个弹性指标来定量评估自动驾驶汽车的性能,主要关注SAE自动化4级(L4)的ADS。我们的弹性指标建立在完整性、准确性、可用性和连续性的正式定义之上,将商业航空中使用的概念也适用于道路应用。在我们的分析中,关键是区分故障(可以定义先验概率)和威胁(无法定义先验概率)。对ADS L4多车道高速公路应用的车辆对车辆和车辆对基础设施通信的模拟定量地展示了我们提出的方法如何在引入威胁后立即在有限的时间过渡期间实现安全运行,以及如何实现持续威胁(通过减少容量缓解)。该模拟还将说明,对于特定的导航系统,如何使用两个互补的弹性指标来量化在有限时间内过渡期间增加的风险以及安全稳态安全运行的容量退化水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resiliency Characterization of Navigation Systems for Intelligent Transportation Applications
Automated Driving Systems (ADS) are expected to be an integral component of a future safe and efficient intelligent transportation system. ADSs assume strategic and tactical maneuvering decisions, and associated vehicle control functions traditionally performed by human drivers. Navigation systems supporting this high level of automation are safety critical and must meet requirements imposed by the use-case nominal operation conditions. These systems must also be resilient to certain intentional and unintentional threats encountered during operation. While there have been past and ongoing efforts to determine PNT safety performance needs, an approach to quantify navigation system resiliency to intentional threats is still lacking. In this paper we develop such approach and introduce two resiliency metrics to quantitatively assess automated vehicle performance, with a primary focus on ADS with SAE Automation Level 4 (L4). Our resiliency metrics build on formal definitions of integrity, accuracy, availability, and continuity, adapting concepts used in commercial aviation to also apply to road applications. In our analysis, the key is to distinguish faults (for which a prior probability can be defined) from threats (for which a prior cannot be defined). A simulation of an ADS L4 multilane highway application with vehicle-to-vehicle and vehicle-to-infrastructure communication quantitatively demonstrates how our proposed approach allows for safe operation during a time-limited transition immediately after the introduction of a threat and also for persistent threats (via reduced capacity mitigation). This simulation will also illustrate how, for a particular navigation system, the two complementary resiliency metrics can be used to quantify the increased risk during the time-limited transition as well as the capacity degradation level for safe steady state safe operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulations using LEO-PNT systems: A Brief Survey Signal Mode Transition Detection in Starlink LEO Satellite Downlink Signals Terrain-Relative Navigation with Neuro-Inspired Elevation Encoding Random Finite Set Approach to Signal Strength Based Passive Localization and Tracking Prediction of Ground Wave Propagation Delays in Terrestrial Radio Navigation Systems Based on Soil Texture Maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1