Aurora:一种热弹性光子网络芯片架构

Amer Qouneh, Zhongqi Li, Madhura Joshi, Wangyuan Zhang, Xin Fu, Tao Li
{"title":"Aurora:一种热弹性光子网络芯片架构","authors":"Amer Qouneh, Zhongqi Li, Madhura Joshi, Wangyuan Zhang, Xin Fu, Tao Li","doi":"10.1109/ICCD.2012.6378667","DOIUrl":null,"url":null,"abstract":"With silicon optical technology moving towards maturity, the use of photonic network-on-chip (NoCs) for global chip communication is emerging as a promising solution to communication requirements of future many core processors. It is expected that photonic NoCs will play an important role in alleviating current power, latency, and bandwidth constraints. However, photonic NoCs are sensitive to ambient temperature variations because their basic constituents, ring resonators, are themselves sensitive to those variations. Since ring resonators are basic building blocks for photonic modulators, switches, multiplexers, and demultiplexers, variations of on-chip temperature pose serious challenges to the proper operation of photonic NoCs. Proposed methods that mitigate the effects of temperature at device level are either difficult to use in CMOS processes or not suitable for large scale implementation. In this paper, we propose Aurora, a thermally resilient photonic NoC architecture design that supports reliable and low bit error rate (BER) on-chip communications in the presence of large temperature variations. Our proposed architecture leverages solutions at both device and architecture layers that synergistically provide significant improvements. To compensate for small temperature variations, our design varies the bias current through ring resonators. For larger temperature variations, we propose architecture-level techniques to re-route messages away from hot regions, and through cooler regions, to their destinations, thereby lowering BER. Our simulation results show that Aurora provides a robust architectural solution to handle temperature variation effects on future photonic NoCs. For instance, average BER and message error rate (MER) are reduced by 78% and 30% respectively when the combined device and architectural technique (SPF) is applied. From the perspective of power efficiency, Aurora is also superior to conventional photonic NoC architectures by as much as 33%.","PeriodicalId":313428,"journal":{"name":"2012 IEEE 30th International Conference on Computer Design (ICCD)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Aurora: A thermally resilient photonic network-on-chip architecture\",\"authors\":\"Amer Qouneh, Zhongqi Li, Madhura Joshi, Wangyuan Zhang, Xin Fu, Tao Li\",\"doi\":\"10.1109/ICCD.2012.6378667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With silicon optical technology moving towards maturity, the use of photonic network-on-chip (NoCs) for global chip communication is emerging as a promising solution to communication requirements of future many core processors. It is expected that photonic NoCs will play an important role in alleviating current power, latency, and bandwidth constraints. However, photonic NoCs are sensitive to ambient temperature variations because their basic constituents, ring resonators, are themselves sensitive to those variations. Since ring resonators are basic building blocks for photonic modulators, switches, multiplexers, and demultiplexers, variations of on-chip temperature pose serious challenges to the proper operation of photonic NoCs. Proposed methods that mitigate the effects of temperature at device level are either difficult to use in CMOS processes or not suitable for large scale implementation. In this paper, we propose Aurora, a thermally resilient photonic NoC architecture design that supports reliable and low bit error rate (BER) on-chip communications in the presence of large temperature variations. Our proposed architecture leverages solutions at both device and architecture layers that synergistically provide significant improvements. To compensate for small temperature variations, our design varies the bias current through ring resonators. For larger temperature variations, we propose architecture-level techniques to re-route messages away from hot regions, and through cooler regions, to their destinations, thereby lowering BER. Our simulation results show that Aurora provides a robust architectural solution to handle temperature variation effects on future photonic NoCs. For instance, average BER and message error rate (MER) are reduced by 78% and 30% respectively when the combined device and architectural technique (SPF) is applied. From the perspective of power efficiency, Aurora is also superior to conventional photonic NoC architectures by as much as 33%.\",\"PeriodicalId\":313428,\"journal\":{\"name\":\"2012 IEEE 30th International Conference on Computer Design (ICCD)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 30th International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2012.6378667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 30th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2012.6378667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

随着硅光技术的日趋成熟,利用光子片上网络(NoCs)进行全球芯片通信是满足未来多核心处理器通信需求的一种有前景的解决方案。预计光子noc将在缓解当前功率、延迟和带宽限制方面发挥重要作用。然而,光子noc对环境温度变化很敏感,因为它们的基本成分环谐振器本身对这些变化很敏感。由于环形谐振器是光子调制器、开关、多路复用器和解路复用器的基本组成部分,片上温度的变化对光子noc的正常运行构成了严重的挑战。所提出的减轻器件级温度影响的方法要么难以在CMOS工艺中使用,要么不适合大规模实施。在本文中,我们提出了Aurora,这是一种热弹性光子NoC架构设计,支持在存在大温度变化的情况下可靠和低误码率(BER)的片上通信。我们提出的架构利用了设备层和架构层的解决方案,这些解决方案协同提供了显著的改进。为了补偿小的温度变化,我们的设计通过环形谐振器改变偏置电流。对于较大的温度变化,我们提出了架构级技术,将消息从炎热地区重新路由到目的地,并通过较冷的地区,从而降低误码率。我们的模拟结果表明,Aurora提供了一个强大的架构解决方案来处理温度变化对未来光子noc的影响。例如,采用组合设备和结构技术(SPF)后,平均误码率和消息错误率分别降低了78%和30%。从功率效率的角度来看,Aurora也比传统的光子NoC架构高出33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aurora: A thermally resilient photonic network-on-chip architecture
With silicon optical technology moving towards maturity, the use of photonic network-on-chip (NoCs) for global chip communication is emerging as a promising solution to communication requirements of future many core processors. It is expected that photonic NoCs will play an important role in alleviating current power, latency, and bandwidth constraints. However, photonic NoCs are sensitive to ambient temperature variations because their basic constituents, ring resonators, are themselves sensitive to those variations. Since ring resonators are basic building blocks for photonic modulators, switches, multiplexers, and demultiplexers, variations of on-chip temperature pose serious challenges to the proper operation of photonic NoCs. Proposed methods that mitigate the effects of temperature at device level are either difficult to use in CMOS processes or not suitable for large scale implementation. In this paper, we propose Aurora, a thermally resilient photonic NoC architecture design that supports reliable and low bit error rate (BER) on-chip communications in the presence of large temperature variations. Our proposed architecture leverages solutions at both device and architecture layers that synergistically provide significant improvements. To compensate for small temperature variations, our design varies the bias current through ring resonators. For larger temperature variations, we propose architecture-level techniques to re-route messages away from hot regions, and through cooler regions, to their destinations, thereby lowering BER. Our simulation results show that Aurora provides a robust architectural solution to handle temperature variation effects on future photonic NoCs. For instance, average BER and message error rate (MER) are reduced by 78% and 30% respectively when the combined device and architectural technique (SPF) is applied. From the perspective of power efficiency, Aurora is also superior to conventional photonic NoC architectures by as much as 33%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Oblivious routing design for mesh networks to achieve a new worst-case throughput bound WaveSync: A low-latency source synchronous bypass network-on-chip architecture Integration of correct-by-construction BIP models into the MetroII design space exploration flow Dynamic phase-based tuning for embedded systems using phase distance mapping A comparative study of wearout mechanisms in state-of-art microprocessors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1