Jonas Nusslein, Sebastian Zieliński, Thomas Gabor, Claudia Linnhoff-Popien, Sebastian Feld
{"title":"利用二次无约束二元优化求解(Max) 3-SAT","authors":"Jonas Nusslein, Sebastian Zieliński, Thomas Gabor, Claudia Linnhoff-Popien, Sebastian Feld","doi":"10.48550/arXiv.2302.03536","DOIUrl":null,"url":null,"abstract":"We introduce a novel approach to translate arbitrary 3-SAT instances to Quadratic Unconstrained Binary Optimization (QUBO) as they are used by quantum annealing (QA) or the quantum approximate optimization algorithm (QAOA). Our approach requires fewer couplings and fewer physical qubits than the current state-of-the-art, which results in higher solution quality. We verified the practical applicability of the approach by testing it on a D-Wave quantum annealer.","PeriodicalId":125954,"journal":{"name":"International Conference on Conceptual Structures","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Solving (Max) 3-SAT via Quadratic Unconstrained Binary Optimization\",\"authors\":\"Jonas Nusslein, Sebastian Zieliński, Thomas Gabor, Claudia Linnhoff-Popien, Sebastian Feld\",\"doi\":\"10.48550/arXiv.2302.03536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel approach to translate arbitrary 3-SAT instances to Quadratic Unconstrained Binary Optimization (QUBO) as they are used by quantum annealing (QA) or the quantum approximate optimization algorithm (QAOA). Our approach requires fewer couplings and fewer physical qubits than the current state-of-the-art, which results in higher solution quality. We verified the practical applicability of the approach by testing it on a D-Wave quantum annealer.\",\"PeriodicalId\":125954,\"journal\":{\"name\":\"International Conference on Conceptual Structures\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Conceptual Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2302.03536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Conceptual Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.03536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solving (Max) 3-SAT via Quadratic Unconstrained Binary Optimization
We introduce a novel approach to translate arbitrary 3-SAT instances to Quadratic Unconstrained Binary Optimization (QUBO) as they are used by quantum annealing (QA) or the quantum approximate optimization algorithm (QAOA). Our approach requires fewer couplings and fewer physical qubits than the current state-of-the-art, which results in higher solution quality. We verified the practical applicability of the approach by testing it on a D-Wave quantum annealer.