基于粒子滤波和四参数退化模型的智能电表剩余使用寿命预测

Huiming Zheng, Zemin Yao, Wenmiao Li, Xiaokai Huang, Taichun Qin
{"title":"基于粒子滤波和四参数退化模型的智能电表剩余使用寿命预测","authors":"Huiming Zheng, Zemin Yao, Wenmiao Li, Xiaokai Huang, Taichun Qin","doi":"10.1109/ICIEA.2019.8833861","DOIUrl":null,"url":null,"abstract":"The smart electricity meter (SEM) is a critical element of the smart grid, so power supply company and customers pay many attention to its service life. However, the existing reliability estimation methods can only provide an overall distribution of the SEM lifetime at certain conditions. To realize real-time prognostics and health management (PHM) of SEMs, this paper proposed a four-parameter model-based particle filter method. Firstly, an accelerated degradation testing is carried out to analyze the aging state of SEMs. Then, a four-parameter degradation model is proposed, and the fitting effectiveness is evaluated. Finally, particle filter is utilized to identify the model parameter and further obtain the RUL distribution of SEMs in service.","PeriodicalId":311302,"journal":{"name":"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remaining Useful Life Prediction of Smart Electricity Meters Based on Particle Filter and a Four-Parameter Degradation Model\",\"authors\":\"Huiming Zheng, Zemin Yao, Wenmiao Li, Xiaokai Huang, Taichun Qin\",\"doi\":\"10.1109/ICIEA.2019.8833861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The smart electricity meter (SEM) is a critical element of the smart grid, so power supply company and customers pay many attention to its service life. However, the existing reliability estimation methods can only provide an overall distribution of the SEM lifetime at certain conditions. To realize real-time prognostics and health management (PHM) of SEMs, this paper proposed a four-parameter model-based particle filter method. Firstly, an accelerated degradation testing is carried out to analyze the aging state of SEMs. Then, a four-parameter degradation model is proposed, and the fitting effectiveness is evaluated. Finally, particle filter is utilized to identify the model parameter and further obtain the RUL distribution of SEMs in service.\",\"PeriodicalId\":311302,\"journal\":{\"name\":\"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2019.8833861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2019.8833861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

智能电表作为智能电网的重要组成部分,其使用寿命受到供电企业和用户的广泛关注。然而,现有的可靠性估计方法只能提供在一定条件下SEM寿命的总体分布。为实现中小企业的实时预后和健康管理,提出了一种基于四参数模型的粒子滤波方法。首先,进行了加速退化试验,分析了sem的老化状态。然后,提出了一种四参数退化模型,并对模型的拟合效果进行了评价。最后,利用粒子滤波对模型参数进行辨识,进一步得到在役中小板的RUL分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Remaining Useful Life Prediction of Smart Electricity Meters Based on Particle Filter and a Four-Parameter Degradation Model
The smart electricity meter (SEM) is a critical element of the smart grid, so power supply company and customers pay many attention to its service life. However, the existing reliability estimation methods can only provide an overall distribution of the SEM lifetime at certain conditions. To realize real-time prognostics and health management (PHM) of SEMs, this paper proposed a four-parameter model-based particle filter method. Firstly, an accelerated degradation testing is carried out to analyze the aging state of SEMs. Then, a four-parameter degradation model is proposed, and the fitting effectiveness is evaluated. Finally, particle filter is utilized to identify the model parameter and further obtain the RUL distribution of SEMs in service.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acoustic Sensors to Measure Speed of Oil Flow in Downhole Pipes Energy efficiency analysis of a liquefied natural gas and electric power combined transmission system Design and analysis of a novel tip-tilt stage with high precision for space applications Fault diagnosis of wind turbine bearing using synchrosqueezing wavelet transform and order analysis Smart Home Energy Management Optimization Method Considering ESS and PEV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1