自适应子空间约束对角加载

Yueh-Ting Tsai, B. Su, Yu Tsao, Syu-Siang Wang
{"title":"自适应子空间约束对角加载","authors":"Yueh-Ting Tsai, B. Su, Yu Tsao, Syu-Siang Wang","doi":"10.1109/APSIPA.2016.7820704","DOIUrl":null,"url":null,"abstract":"Recently, a subspace-constrained diagonal loading (SSC-DL) method has been proposed for robust beamforming against the mismatched direction of arrival (DoA) issue. Although SSC-DL has outstanding output SINR performance, it is not clear how to choose the DL factor and subspace dimension in practice. The aim of the present study is to further investigate conditions on optimal parameters for SSC-DL and algorithms to determine them in realistic test conditions. First, we proposed to use the Capon power spectrum density to determine the desired signal power, which is then used to compute the optimal DL factor for SSC-DL. Next, a novel adaptive SSC-DL approach (adaptive-SSC-DL) is proposed, which can dynamically optimize the sub-space dimension based on the test conditions. Simulation results show that adaptive-SSC-DL provides higher output SINR than several existing methods and achieves comparable performance comparing to SSC-DL with ideal parameter setup.","PeriodicalId":409448,"journal":{"name":"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Adaptive subspace-constrained diagonal loading\",\"authors\":\"Yueh-Ting Tsai, B. Su, Yu Tsao, Syu-Siang Wang\",\"doi\":\"10.1109/APSIPA.2016.7820704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a subspace-constrained diagonal loading (SSC-DL) method has been proposed for robust beamforming against the mismatched direction of arrival (DoA) issue. Although SSC-DL has outstanding output SINR performance, it is not clear how to choose the DL factor and subspace dimension in practice. The aim of the present study is to further investigate conditions on optimal parameters for SSC-DL and algorithms to determine them in realistic test conditions. First, we proposed to use the Capon power spectrum density to determine the desired signal power, which is then used to compute the optimal DL factor for SSC-DL. Next, a novel adaptive SSC-DL approach (adaptive-SSC-DL) is proposed, which can dynamically optimize the sub-space dimension based on the test conditions. Simulation results show that adaptive-SSC-DL provides higher output SINR than several existing methods and achieves comparable performance comparing to SSC-DL with ideal parameter setup.\",\"PeriodicalId\":409448,\"journal\":{\"name\":\"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPA.2016.7820704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2016.7820704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

近年来,针对到达方向不匹配问题,提出了一种子空间约束对角加载(SSC-DL)的鲁棒波束形成方法。虽然SSC-DL具有出色的输出SINR性能,但在实际中如何选择DL因子和子空间维数并不是很明确。本研究的目的是进一步研究SSC-DL最优参数的条件和在实际测试条件下确定它们的算法。首先,我们提出使用Capon功率谱密度来确定所需的信号功率,然后使用该功率谱密度来计算SSC-DL的最优DL因子。其次,提出了一种新的自适应SSC-DL方法(adaptive-SSC-DL),该方法可以根据测试条件动态优化子空间维度。仿真结果表明,自适应SSC-DL方法的输出信噪比高于几种现有方法,并且在理想参数设置下与SSC-DL方法性能相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive subspace-constrained diagonal loading
Recently, a subspace-constrained diagonal loading (SSC-DL) method has been proposed for robust beamforming against the mismatched direction of arrival (DoA) issue. Although SSC-DL has outstanding output SINR performance, it is not clear how to choose the DL factor and subspace dimension in practice. The aim of the present study is to further investigate conditions on optimal parameters for SSC-DL and algorithms to determine them in realistic test conditions. First, we proposed to use the Capon power spectrum density to determine the desired signal power, which is then used to compute the optimal DL factor for SSC-DL. Next, a novel adaptive SSC-DL approach (adaptive-SSC-DL) is proposed, which can dynamically optimize the sub-space dimension based on the test conditions. Simulation results show that adaptive-SSC-DL provides higher output SINR than several existing methods and achieves comparable performance comparing to SSC-DL with ideal parameter setup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bilateral hemiface feature representation learning for pose robust facial expression recognition Voice-pathology analysis based on AR-HMM Locality sensitive discriminant analysis for speaker verification On the training of DNN-based average voice model for speech synthesis A study on target feature activation and normalization and their impacts on the performance of DNN based speech dereverberation systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1