基于多传感器多伯努利滤波的极化MIMO雷达探测前跟踪

Suqi Li, Bailu Wang, Wei Yi, G. Cui, L. Kong, Haiguang Yang
{"title":"基于多传感器多伯努利滤波的极化MIMO雷达探测前跟踪","authors":"Suqi Li, Bailu Wang, Wei Yi, G. Cui, L. Kong, Haiguang Yang","doi":"10.1109/RADAR.2014.6875792","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with the problem of simultaneously detecting and tracking multiple targets using polarimetric multiple input multiple output (MIMO) radars. The problem is formulated in a Bayesian framework by modeling the collection of states as a random finite set. First, we propose a multiple sensor Multi-Bernoulli (MS-MeMber) filter based track-before-detect (TBD) algorithm suitable for both MIMO radars and polarimetric MIMO radars. Then the sequential Monte Carlo (SMC) implementations are performed to prove the effectiveness of the proposed algorithm. Simulation results show that the polarization diversity can be exploited to enhance the detecting and tracking performance of MIMO radars.","PeriodicalId":127690,"journal":{"name":"2014 IEEE Radar Conference","volume":"48 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multiple sensor Multi-Bernoulli filter based track-before-detect for polarimetric MIMO radars\",\"authors\":\"Suqi Li, Bailu Wang, Wei Yi, G. Cui, L. Kong, Haiguang Yang\",\"doi\":\"10.1109/RADAR.2014.6875792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we deal with the problem of simultaneously detecting and tracking multiple targets using polarimetric multiple input multiple output (MIMO) radars. The problem is formulated in a Bayesian framework by modeling the collection of states as a random finite set. First, we propose a multiple sensor Multi-Bernoulli (MS-MeMber) filter based track-before-detect (TBD) algorithm suitable for both MIMO radars and polarimetric MIMO radars. Then the sequential Monte Carlo (SMC) implementations are performed to prove the effectiveness of the proposed algorithm. Simulation results show that the polarization diversity can be exploited to enhance the detecting and tracking performance of MIMO radars.\",\"PeriodicalId\":127690,\"journal\":{\"name\":\"2014 IEEE Radar Conference\",\"volume\":\"48 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2014.6875792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2014.6875792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了利用极化多输入多输出(MIMO)雷达同时探测和跟踪多个目标的问题。该问题通过将状态集合建模为随机有限集,在贝叶斯框架中表述。首先,我们提出了一种基于多传感器多伯努利(MS-MeMber)滤波器的多传感器检测前跟踪(TBD)算法,适用于MIMO雷达和极化MIMO雷达。然后通过时序蒙特卡罗(SMC)实现验证了该算法的有效性。仿真结果表明,利用极化分集可以提高MIMO雷达的探测和跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple sensor Multi-Bernoulli filter based track-before-detect for polarimetric MIMO radars
In this paper, we deal with the problem of simultaneously detecting and tracking multiple targets using polarimetric multiple input multiple output (MIMO) radars. The problem is formulated in a Bayesian framework by modeling the collection of states as a random finite set. First, we propose a multiple sensor Multi-Bernoulli (MS-MeMber) filter based track-before-detect (TBD) algorithm suitable for both MIMO radars and polarimetric MIMO radars. Then the sequential Monte Carlo (SMC) implementations are performed to prove the effectiveness of the proposed algorithm. Simulation results show that the polarization diversity can be exploited to enhance the detecting and tracking performance of MIMO radars.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel random stepped frequency radar using chaos A robust sparse optimization for pattern synthesis with unknown manifold error Low-profile high-sensitivity sub-array module with HTS filters for an active phased array antenna Compressed radar via Doppler focusing Ambiguity function of bipolar ultrawideband-throb signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1