Shengbin Meng, Yang Li, Yiting Liao, Junlin Li, Shiqi Wang
{"title":"学习以较低的比特率和相同的感知质量对用户生成的短视频进行编码","authors":"Shengbin Meng, Yang Li, Yiting Liao, Junlin Li, Shiqi Wang","doi":"10.1109/VCIP49819.2020.9301835","DOIUrl":null,"url":null,"abstract":"On a platform of user-generated content (UGC), the uploaded videos need to be encoded again before distribution. For this specific encoding scenario, we propose a novel dataset and a corresponding learning-based scheme that is able to achieve significant bitrate saving without decreasing perceptual quality. In the dataset, each video’s label indicates whether it can be encoded with a much lower bitrate while still keeps the same perceptual quality. Models trained on this dataset can then be used to classify the input video and adjust its final encoding parameters accordingly. With enough classification accuracy, more than 20% average bitrate saving can be obtained through the proposed scheme. The dataset will be further expanded to facilitate the study on this problem.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning to encode user-generated short videos with lower bitrate and the same perceptual quality\",\"authors\":\"Shengbin Meng, Yang Li, Yiting Liao, Junlin Li, Shiqi Wang\",\"doi\":\"10.1109/VCIP49819.2020.9301835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On a platform of user-generated content (UGC), the uploaded videos need to be encoded again before distribution. For this specific encoding scenario, we propose a novel dataset and a corresponding learning-based scheme that is able to achieve significant bitrate saving without decreasing perceptual quality. In the dataset, each video’s label indicates whether it can be encoded with a much lower bitrate while still keeps the same perceptual quality. Models trained on this dataset can then be used to classify the input video and adjust its final encoding parameters accordingly. With enough classification accuracy, more than 20% average bitrate saving can be obtained through the proposed scheme. The dataset will be further expanded to facilitate the study on this problem.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning to encode user-generated short videos with lower bitrate and the same perceptual quality
On a platform of user-generated content (UGC), the uploaded videos need to be encoded again before distribution. For this specific encoding scenario, we propose a novel dataset and a corresponding learning-based scheme that is able to achieve significant bitrate saving without decreasing perceptual quality. In the dataset, each video’s label indicates whether it can be encoded with a much lower bitrate while still keeps the same perceptual quality. Models trained on this dataset can then be used to classify the input video and adjust its final encoding parameters accordingly. With enough classification accuracy, more than 20% average bitrate saving can be obtained through the proposed scheme. The dataset will be further expanded to facilitate the study on this problem.