{"title":"结合时空和随机事件识别的基于内容的视频检索","authors":"M. Petkovic, W. Jonker","doi":"10.1109/EVENT.2001.938869","DOIUrl":null,"url":null,"abstract":"As amounts of publicly available video data grow the need to query this data efficiently becomes significant. Consequently content-based retrieval of video data turns out to be a challenging and important problem. We address the specific aspect of inferring semantics automatically from raw video data. In particular, we introduce a new video data model that supports the integrated use of two different approaches for mapping low-level features to high-level concepts. Firstly, the model is extended with a rule-based approach that supports spatio-temporal formalization of high-level concepts, and then with a stochastic approach. Furthermore, results on real tennis video data are presented, demonstrating the validity of both approaches, as well us advantages of their integrated use.","PeriodicalId":375539,"journal":{"name":"Proceedings IEEE Workshop on Detection and Recognition of Events in Video","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":"{\"title\":\"Content-based video retrieval by integrating spatio-temporal and stochastic recognition of events\",\"authors\":\"M. Petkovic, W. Jonker\",\"doi\":\"10.1109/EVENT.2001.938869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As amounts of publicly available video data grow the need to query this data efficiently becomes significant. Consequently content-based retrieval of video data turns out to be a challenging and important problem. We address the specific aspect of inferring semantics automatically from raw video data. In particular, we introduce a new video data model that supports the integrated use of two different approaches for mapping low-level features to high-level concepts. Firstly, the model is extended with a rule-based approach that supports spatio-temporal formalization of high-level concepts, and then with a stochastic approach. Furthermore, results on real tennis video data are presented, demonstrating the validity of both approaches, as well us advantages of their integrated use.\",\"PeriodicalId\":375539,\"journal\":{\"name\":\"Proceedings IEEE Workshop on Detection and Recognition of Events in Video\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Workshop on Detection and Recognition of Events in Video\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EVENT.2001.938869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Workshop on Detection and Recognition of Events in Video","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EVENT.2001.938869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Content-based video retrieval by integrating spatio-temporal and stochastic recognition of events
As amounts of publicly available video data grow the need to query this data efficiently becomes significant. Consequently content-based retrieval of video data turns out to be a challenging and important problem. We address the specific aspect of inferring semantics automatically from raw video data. In particular, we introduce a new video data model that supports the integrated use of two different approaches for mapping low-level features to high-level concepts. Firstly, the model is extended with a rule-based approach that supports spatio-temporal formalization of high-level concepts, and then with a stochastic approach. Furthermore, results on real tennis video data are presented, demonstrating the validity of both approaches, as well us advantages of their integrated use.