{"title":"基于符号感知的用户参与周期度量用于在线搜索质量评估","authors":"Alexey Drutsa","doi":"10.1145/2766462.2767814","DOIUrl":null,"url":null,"abstract":"Modern Internet companies improve evaluation criteria of their data-driven decision-making that is based on online controlled experiments (also known as A/B tests). The amplitude metrics of user engagement are known to be well sensitive to service changes, but they could not be used to determine, whether the treatment effect is positive or negative. We propose to overcome this sign-agnostic issue by paying attention to the phase of the corresponding DFT sine wave. We refine the amplitude metrics of the first frequency by the phase ones and formalize our intuition in several novel overall evaluation criteria. These criteria are then verified over A/B experiments on real users of Yandex. We find that our approach holds the sensitivity level of the amplitudes and makes their changes sign-aware w.r.t. the treatment effect.","PeriodicalId":297035,"journal":{"name":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Sign-Aware Periodicity Metrics of User Engagement for Online Search Quality Evaluation\",\"authors\":\"Alexey Drutsa\",\"doi\":\"10.1145/2766462.2767814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern Internet companies improve evaluation criteria of their data-driven decision-making that is based on online controlled experiments (also known as A/B tests). The amplitude metrics of user engagement are known to be well sensitive to service changes, but they could not be used to determine, whether the treatment effect is positive or negative. We propose to overcome this sign-agnostic issue by paying attention to the phase of the corresponding DFT sine wave. We refine the amplitude metrics of the first frequency by the phase ones and formalize our intuition in several novel overall evaluation criteria. These criteria are then verified over A/B experiments on real users of Yandex. We find that our approach holds the sensitivity level of the amplitudes and makes their changes sign-aware w.r.t. the treatment effect.\",\"PeriodicalId\":297035,\"journal\":{\"name\":\"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2766462.2767814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2766462.2767814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sign-Aware Periodicity Metrics of User Engagement for Online Search Quality Evaluation
Modern Internet companies improve evaluation criteria of their data-driven decision-making that is based on online controlled experiments (also known as A/B tests). The amplitude metrics of user engagement are known to be well sensitive to service changes, but they could not be used to determine, whether the treatment effect is positive or negative. We propose to overcome this sign-agnostic issue by paying attention to the phase of the corresponding DFT sine wave. We refine the amplitude metrics of the first frequency by the phase ones and formalize our intuition in several novel overall evaluation criteria. These criteria are then verified over A/B experiments on real users of Yandex. We find that our approach holds the sensitivity level of the amplitudes and makes their changes sign-aware w.r.t. the treatment effect.