用FDEM直接数值模拟评价微断裂对颗粒组织强度的影响

T. Hagengruber
{"title":"用FDEM直接数值模拟评价微断裂对颗粒组织强度的影响","authors":"T. Hagengruber","doi":"10.56952/arma-2022-2209","DOIUrl":null,"url":null,"abstract":"We present results of an investigation into the mechanisms of damage in granular microstructures conducted through direct numerical simulation with the combined Finite-Discrete Element Method (FDEM). Scanning Electron Microscope (SEM) images of a pressed crystalline powder are directly meshed, resolving grain-grain interfaces. Semi-ductile microfracture is simulated by prescribing a combination of inter-granular brittle fracture and intra-granular grain plasticity. Pristine (undamaged) and damaged microstructures are simulated in uniaxial compression tests and compared to experimental uniaxial compression measurements from literature. The simulation results show that the observed microscale mechanisms of damage (microfracture predominantly around and sometimes through grains and crack associated pore-growth) can well explain degradation of strength observed in the laboratory measurements. A method of tracing grain boundaries from SEM images is described and applied to meshing of a microstructure damaged through cyclic thermal loading. By calibrating the simulations to the damaged and undamaged experimental measurements, micro-mechanical/structural insight is gained into the mechanisms of damage for the material. The results show that the SEM-based micro-characterization of damage can explain the degradation in effective strength observed in the testing and can be accurately modeled using the presented methods.","PeriodicalId":418045,"journal":{"name":"Proceedings 56th US Rock Mechanics / Geomechanics Symposium","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strength effects of microfracture on granular microstructures evaluated by FDEM direct numerical simulation\",\"authors\":\"T. Hagengruber\",\"doi\":\"10.56952/arma-2022-2209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present results of an investigation into the mechanisms of damage in granular microstructures conducted through direct numerical simulation with the combined Finite-Discrete Element Method (FDEM). Scanning Electron Microscope (SEM) images of a pressed crystalline powder are directly meshed, resolving grain-grain interfaces. Semi-ductile microfracture is simulated by prescribing a combination of inter-granular brittle fracture and intra-granular grain plasticity. Pristine (undamaged) and damaged microstructures are simulated in uniaxial compression tests and compared to experimental uniaxial compression measurements from literature. The simulation results show that the observed microscale mechanisms of damage (microfracture predominantly around and sometimes through grains and crack associated pore-growth) can well explain degradation of strength observed in the laboratory measurements. A method of tracing grain boundaries from SEM images is described and applied to meshing of a microstructure damaged through cyclic thermal loading. By calibrating the simulations to the damaged and undamaged experimental measurements, micro-mechanical/structural insight is gained into the mechanisms of damage for the material. The results show that the SEM-based micro-characterization of damage can explain the degradation in effective strength observed in the testing and can be accurately modeled using the presented methods.\",\"PeriodicalId\":418045,\"journal\":{\"name\":\"Proceedings 56th US Rock Mechanics / Geomechanics Symposium\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 56th US Rock Mechanics / Geomechanics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56952/arma-2022-2209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 56th US Rock Mechanics / Geomechanics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56952/arma-2022-2209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了利用有限-离散单元法(FDEM)直接数值模拟研究颗粒微结构损伤机理的结果。压晶粉末的扫描电镜(SEM)图像是直接网格化的,可以分辨出晶粒之间的界面。采用晶间脆性断裂和晶内塑性相结合的方法模拟半韧性微断裂。在单轴压缩测试中模拟原始(未损坏)和损坏的微观结构,并与文献中的实验单轴压缩测量结果进行比较。模拟结果表明,观察到的微尺度损伤机制(微断裂主要围绕颗粒,有时穿过颗粒和裂纹相关的孔隙生长)可以很好地解释实验室测量中观察到的强度退化。描述了一种从扫描电镜图像中追踪晶界的方法,并将其应用于循环热载荷损伤的微观结构的网格划分。通过将模拟与损伤和未损伤的实验测量结果进行校准,可以获得材料损伤机制的微观力学/结构洞察力。结果表明,基于扫描电镜的损伤微观表征可以解释试验中观察到的有效强度退化,并且可以使用所提出的方法准确地建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strength effects of microfracture on granular microstructures evaluated by FDEM direct numerical simulation
We present results of an investigation into the mechanisms of damage in granular microstructures conducted through direct numerical simulation with the combined Finite-Discrete Element Method (FDEM). Scanning Electron Microscope (SEM) images of a pressed crystalline powder are directly meshed, resolving grain-grain interfaces. Semi-ductile microfracture is simulated by prescribing a combination of inter-granular brittle fracture and intra-granular grain plasticity. Pristine (undamaged) and damaged microstructures are simulated in uniaxial compression tests and compared to experimental uniaxial compression measurements from literature. The simulation results show that the observed microscale mechanisms of damage (microfracture predominantly around and sometimes through grains and crack associated pore-growth) can well explain degradation of strength observed in the laboratory measurements. A method of tracing grain boundaries from SEM images is described and applied to meshing of a microstructure damaged through cyclic thermal loading. By calibrating the simulations to the damaged and undamaged experimental measurements, micro-mechanical/structural insight is gained into the mechanisms of damage for the material. The results show that the SEM-based micro-characterization of damage can explain the degradation in effective strength observed in the testing and can be accurately modeled using the presented methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strength effects of microfracture on granular microstructures evaluated by FDEM direct numerical simulation EGS Stimulation Design with Uncertainty Quantification at the EGS Collab Site Mitigation of Sand Production Risk using Thermally Expandable Polymeric Beads Simulation-Based Patterns Optimization of Enhanced Geothermal System Effect of interlaminar difference on Height propagation behavior of hydraulic fracture in Lucaogou Shale
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1