{"title":"计算多项式理想最小关联素数和根的模算法","authors":"T. Aoyama, M. Noro","doi":"10.1145/3208976.3209014","DOIUrl":null,"url":null,"abstract":"In this paper, we propose algorithms for computing minimal associated primes of ideals in polynomial rings over Q and computing radicals of ideals in polynomial rings over a field. They apply Chinese Remainder Theorem (CRT) to Laplagne's algorithm which computes minimal associated primes without producing redundant components and computes radicals. CRT reconstructs an object in a ring from its modular images in the quotient rings modulo some ideals. In Laplagne's algorithm, ideals are decomposed over rational function fields by regarding some variables as parameters. In our new algorithms, we compute the minimal associated primes and the radical of < φ(G) > for a given ideal I= < G >, where φ is a substitution map for a parameter. Then we construct candidates of the minimal associated primes and the radical of I by applying CRT for those of < φ(G) >'s. In order for this method to work correctly, the shape of each modular component must coincide with that of the corresponding component of the ideal for computations of minimal associated primes, and radicals of modular images of given ideals must coincide with modular images of radicals of given ideals for radical computations. The former is realized with a high probability because a multivariate irreducible polynomial over Q remains irreducible after a substitution of integers for variables with a high probability and the latter is realized except for a finite number of moduli.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Modular Algorithms for Computing Minimal Associated Primes and Radicals of Polynomial Ideals\",\"authors\":\"T. Aoyama, M. Noro\",\"doi\":\"10.1145/3208976.3209014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose algorithms for computing minimal associated primes of ideals in polynomial rings over Q and computing radicals of ideals in polynomial rings over a field. They apply Chinese Remainder Theorem (CRT) to Laplagne's algorithm which computes minimal associated primes without producing redundant components and computes radicals. CRT reconstructs an object in a ring from its modular images in the quotient rings modulo some ideals. In Laplagne's algorithm, ideals are decomposed over rational function fields by regarding some variables as parameters. In our new algorithms, we compute the minimal associated primes and the radical of < φ(G) > for a given ideal I= < G >, where φ is a substitution map for a parameter. Then we construct candidates of the minimal associated primes and the radical of I by applying CRT for those of < φ(G) >'s. In order for this method to work correctly, the shape of each modular component must coincide with that of the corresponding component of the ideal for computations of minimal associated primes, and radicals of modular images of given ideals must coincide with modular images of radicals of given ideals for radical computations. The former is realized with a high probability because a multivariate irreducible polynomial over Q remains irreducible after a substitution of integers for variables with a high probability and the latter is realized except for a finite number of moduli.\",\"PeriodicalId\":105762,\"journal\":{\"name\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3208976.3209014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3209014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
摘要
本文给出了计算Q上多项式环上理想的最小关联素数和计算域上多项式环上理想的根的算法。他们将中国剩余定理(CRT)应用于计算最小关联素数而不产生冗余分量和计算根号的拉普拉斯算法。CRT从其在商环中的模像对某些理想模重建环中的对象。在Laplagne算法中,将一些变量作为参数,在有理函数域上进行理想分解。在我们的新算法中,我们计算了给定理想I= < G >的最小关联素数和< φ(G) >的根,其中φ是参数的替换映射。然后对< φ(G) > s的最小伴生素数和I的根数应用CRT构造了最小伴生素数的候选项。为了使这种方法正确地工作,每个模分量的形状必须与计算最小关联素数的理想的相应分量的形状相一致,并且给定理想的模象的根必须与给定理想的根的模象相一致。前者实现的概率很大,因为用整数替换变量后,Q上的多元不可约多项式仍然不可约,而后者实现的概率只有有限个模。
Modular Algorithms for Computing Minimal Associated Primes and Radicals of Polynomial Ideals
In this paper, we propose algorithms for computing minimal associated primes of ideals in polynomial rings over Q and computing radicals of ideals in polynomial rings over a field. They apply Chinese Remainder Theorem (CRT) to Laplagne's algorithm which computes minimal associated primes without producing redundant components and computes radicals. CRT reconstructs an object in a ring from its modular images in the quotient rings modulo some ideals. In Laplagne's algorithm, ideals are decomposed over rational function fields by regarding some variables as parameters. In our new algorithms, we compute the minimal associated primes and the radical of < φ(G) > for a given ideal I= < G >, where φ is a substitution map for a parameter. Then we construct candidates of the minimal associated primes and the radical of I by applying CRT for those of < φ(G) >'s. In order for this method to work correctly, the shape of each modular component must coincide with that of the corresponding component of the ideal for computations of minimal associated primes, and radicals of modular images of given ideals must coincide with modular images of radicals of given ideals for radical computations. The former is realized with a high probability because a multivariate irreducible polynomial over Q remains irreducible after a substitution of integers for variables with a high probability and the latter is realized except for a finite number of moduli.