基于雷达深度学习应用的人体运动训练数据生成

Karim Ishak, N. Appenrodt, J. Dickmann, C. Waldschmidt
{"title":"基于雷达深度学习应用的人体运动训练数据生成","authors":"Karim Ishak, N. Appenrodt, J. Dickmann, C. Waldschmidt","doi":"10.1109/ICMIM.2018.8443559","DOIUrl":null,"url":null,"abstract":"Radar sensors are utilized for detection and classification purposes in various applications. In order to use deep learning techniques, lots of training data are required. Accordingly, lots of measurements and labelling tasks are then needed. For the purpose of pre-training or examining first ideas before bringing them into reality, synthetic radar data are of great help. In this paper, a workflow for automatically generating radar data of human gestures is presented, starting with creating the desired animations until synthesizing radar data and getting the final required dataset. The dataset could then be used for training deep learning models. A classification scenario applying this workflow is also introduced.","PeriodicalId":342532,"journal":{"name":"2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Human Motion Training Data Generation for Radar Based Deep Learning Applications\",\"authors\":\"Karim Ishak, N. Appenrodt, J. Dickmann, C. Waldschmidt\",\"doi\":\"10.1109/ICMIM.2018.8443559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radar sensors are utilized for detection and classification purposes in various applications. In order to use deep learning techniques, lots of training data are required. Accordingly, lots of measurements and labelling tasks are then needed. For the purpose of pre-training or examining first ideas before bringing them into reality, synthetic radar data are of great help. In this paper, a workflow for automatically generating radar data of human gestures is presented, starting with creating the desired animations until synthesizing radar data and getting the final required dataset. The dataset could then be used for training deep learning models. A classification scenario applying this workflow is also introduced.\",\"PeriodicalId\":342532,\"journal\":{\"name\":\"2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMIM.2018.8443559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIM.2018.8443559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

雷达传感器在各种应用中用于检测和分类目的。为了使用深度学习技术,需要大量的训练数据。因此,需要进行大量的测量和标记工作。为了在将最初的想法付诸实践之前进行预训练或检验,合成雷达数据有很大的帮助。本文提出了一种自动生成人体手势雷达数据的工作流程,从创建所需的动画开始,直到合成雷达数据并获得最终所需的数据集。然后,数据集可以用于训练深度学习模型。还介绍了应用此工作流的分类场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human Motion Training Data Generation for Radar Based Deep Learning Applications
Radar sensors are utilized for detection and classification purposes in various applications. In order to use deep learning techniques, lots of training data are required. Accordingly, lots of measurements and labelling tasks are then needed. For the purpose of pre-training or examining first ideas before bringing them into reality, synthetic radar data are of great help. In this paper, a workflow for automatically generating radar data of human gestures is presented, starting with creating the desired animations until synthesizing radar data and getting the final required dataset. The dataset could then be used for training deep learning models. A classification scenario applying this workflow is also introduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Instantaneous Actual Motion Estimation with a Single High-Resolution Radar Sensor Ego-Motion Estimation using Distributed Single-Channel Radar Sensors Design and Implementation of a FMCW GPR for UAV-based Mine Detection UAV-Based Ground Penetrating Synthetic Aperture Radar Human Motion Training Data Generation for Radar Based Deep Learning Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1