改进SQD-PageRank算法的混合方法

A. S. Djaanfar, B. Frikh, B. Ouhbi
{"title":"改进SQD-PageRank算法的混合方法","authors":"A. S. Djaanfar, B. Frikh, B. Ouhbi","doi":"10.1109/INTECH.2012.6457747","DOIUrl":null,"url":null,"abstract":"The PageRank algorithm is used in the Google search engine to calculate a single list of popularity scores for each page in the Web. These popularity scores are used to rank query results when presented to the user. PageRank assigns to a page a score proportional to the number of times a random surfer would visit that page, if it surfed indefinitely from page to page, following all outlinks from a page with equal probability. Thereupon, several algorithms are introduced to improve the last one. In this paper, we introduce a more intelligent surfer model based on combining ontology, web contents and PageRank. Firstly, we propose a relevance measure of a web page relative to a multiple-term query. Then, we develop our performed intelligent surfer model. Efficient execution of our algorithm in a local database is performed. Results show that our algorithm significantly outperforms the existing algorithms in the quality of the pages returned, while remaining efficient enough to be used in today's large search engines.","PeriodicalId":369113,"journal":{"name":"Second International Conference on the Innovative Computing Technology (INTECH 2012)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A hybrid method for improving the SQD-PageRank algorithm\",\"authors\":\"A. S. Djaanfar, B. Frikh, B. Ouhbi\",\"doi\":\"10.1109/INTECH.2012.6457747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The PageRank algorithm is used in the Google search engine to calculate a single list of popularity scores for each page in the Web. These popularity scores are used to rank query results when presented to the user. PageRank assigns to a page a score proportional to the number of times a random surfer would visit that page, if it surfed indefinitely from page to page, following all outlinks from a page with equal probability. Thereupon, several algorithms are introduced to improve the last one. In this paper, we introduce a more intelligent surfer model based on combining ontology, web contents and PageRank. Firstly, we propose a relevance measure of a web page relative to a multiple-term query. Then, we develop our performed intelligent surfer model. Efficient execution of our algorithm in a local database is performed. Results show that our algorithm significantly outperforms the existing algorithms in the quality of the pages returned, while remaining efficient enough to be used in today's large search engines.\",\"PeriodicalId\":369113,\"journal\":{\"name\":\"Second International Conference on the Innovative Computing Technology (INTECH 2012)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Second International Conference on the Innovative Computing Technology (INTECH 2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTECH.2012.6457747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Second International Conference on the Innovative Computing Technology (INTECH 2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTECH.2012.6457747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

PageRank算法在Google搜索引擎中用于计算Web中每个页面的单个受欢迎程度评分列表。这些流行度分数用于对呈现给用户的查询结果进行排序。PageRank给一个页面分配一个分数,这个分数与一个随机浏览者访问该页面的次数成正比,如果这个浏览者无限地从一个页面浏览到另一个页面,并以相同的概率跟随一个页面的所有外链。在此基础上,介绍了几种算法对最后一种算法进行改进。本文介绍了一种基于本体、网页内容和PageRank相结合的更智能的冲浪者模型。首先,我们提出了一个网页相对于多词查询的相关性度量。然后,我们开发了我们的智能冲浪者模型。算法在本地数据库中得到了有效的执行。结果表明,我们的算法在返回页面的质量上明显优于现有的算法,同时仍然足够高效,可以用于当今的大型搜索引擎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid method for improving the SQD-PageRank algorithm
The PageRank algorithm is used in the Google search engine to calculate a single list of popularity scores for each page in the Web. These popularity scores are used to rank query results when presented to the user. PageRank assigns to a page a score proportional to the number of times a random surfer would visit that page, if it surfed indefinitely from page to page, following all outlinks from a page with equal probability. Thereupon, several algorithms are introduced to improve the last one. In this paper, we introduce a more intelligent surfer model based on combining ontology, web contents and PageRank. Firstly, we propose a relevance measure of a web page relative to a multiple-term query. Then, we develop our performed intelligent surfer model. Efficient execution of our algorithm in a local database is performed. Results show that our algorithm significantly outperforms the existing algorithms in the quality of the pages returned, while remaining efficient enough to be used in today's large search engines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Road-signs detection by using of colour image segmentation method based on the 3D content correlation Performance analysis framework to optimize storage infrastructure for Cloud Computing A deadlock managing process for distributed and replicated database in P2P system A medical image watermarking scheme based on dual-tree wavelet transform Extracting reusable fragments from business process using BPMN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1