{"title":"合成少数派过采样技术的安全水平图","authors":"C. Bunkhumpornpat, Sitthichoke Subpaiboonkit","doi":"10.1109/ISCIT.2013.6645923","DOIUrl":null,"url":null,"abstract":"In the class imbalance problem, most existent classifiers which are designed by the distribution of balance datasets fail to recognize minority classes since a large number of negative instances can dominate a few positive instances. Borderline-SMOTE and Safe-Level-SMOTE are over-sampling techniques which are applied to handle this situation by generating synthetic instances in different regions. The former operates on the border of a minority class while the latter works inside the class far from the border. Unfortunately, a data miner is unable to conveniently justify a suitable SMOTE for each dataset. In this paper, a safe level graph is proposed as a guideline tool for selecting an appropriate SMOTE and describes the characteristic of a minority class in an imbalance dataset. Relying on advice of a safe level graph, the experimental success rate is shown to reach 73% when an F-measure is used as the performance measure and 78% for satisfactory AUCs.","PeriodicalId":356009,"journal":{"name":"2013 13th International Symposium on Communications and Information Technologies (ISCIT)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Safe level graph for synthetic minority over-sampling techniques\",\"authors\":\"C. Bunkhumpornpat, Sitthichoke Subpaiboonkit\",\"doi\":\"10.1109/ISCIT.2013.6645923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the class imbalance problem, most existent classifiers which are designed by the distribution of balance datasets fail to recognize minority classes since a large number of negative instances can dominate a few positive instances. Borderline-SMOTE and Safe-Level-SMOTE are over-sampling techniques which are applied to handle this situation by generating synthetic instances in different regions. The former operates on the border of a minority class while the latter works inside the class far from the border. Unfortunately, a data miner is unable to conveniently justify a suitable SMOTE for each dataset. In this paper, a safe level graph is proposed as a guideline tool for selecting an appropriate SMOTE and describes the characteristic of a minority class in an imbalance dataset. Relying on advice of a safe level graph, the experimental success rate is shown to reach 73% when an F-measure is used as the performance measure and 78% for satisfactory AUCs.\",\"PeriodicalId\":356009,\"journal\":{\"name\":\"2013 13th International Symposium on Communications and Information Technologies (ISCIT)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 13th International Symposium on Communications and Information Technologies (ISCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCIT.2013.6645923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th International Symposium on Communications and Information Technologies (ISCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCIT.2013.6645923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Safe level graph for synthetic minority over-sampling techniques
In the class imbalance problem, most existent classifiers which are designed by the distribution of balance datasets fail to recognize minority classes since a large number of negative instances can dominate a few positive instances. Borderline-SMOTE and Safe-Level-SMOTE are over-sampling techniques which are applied to handle this situation by generating synthetic instances in different regions. The former operates on the border of a minority class while the latter works inside the class far from the border. Unfortunately, a data miner is unable to conveniently justify a suitable SMOTE for each dataset. In this paper, a safe level graph is proposed as a guideline tool for selecting an appropriate SMOTE and describes the characteristic of a minority class in an imbalance dataset. Relying on advice of a safe level graph, the experimental success rate is shown to reach 73% when an F-measure is used as the performance measure and 78% for satisfactory AUCs.